ETH Price: $2,416.07 (+1.89%)

Contract Diff Checker

Contract Name:
Whale

Contract Source Code:

// SPDX-License-Identifier: MIT
import "./ONFT721.sol";

pragma solidity ^0.8.18;

/// @title Interface of Whale, which follows the UniversalONFT standard
contract Whale is ONFT721 {
    uint256 public fee = 0.0001 ether;
    uint256 public nextMintId;
    uint256 public maxMintId;
    mapping(address => uint256[]) public userNFTIds;

    /// @notice Constructor for the UniversalONFT
    /// @param _layerZeroEndpoint handles message transmission across chains
    /// @param _startMintId the starting mint number on this chain
    /// @param _endMintId the max number of mints on this chain
    constructor(
        uint256 _minGasToTransfer,
        address _layerZeroEndpoint,
        uint256 _startMintId,
        uint256 _endMintId
    ) ONFT721("Whale ONFT", "WHL", _minGasToTransfer, _layerZeroEndpoint) {
        nextMintId = _startMintId;
        maxMintId = _endMintId;
    }

    function mint() external payable {
        require(msg.value >= fee, "Not enough ether sent");
        require(nextMintId <= maxMintId, "Too many, bruv");
        uint256 newId = nextMintId;
        nextMintId++;
        
        userNFTIds[msg.sender].push(newId);

        _safeMint(msg.sender, newId);
    }

    function getUserNFTIds(address user) external view returns (uint256[] memory) {
    return userNFTIds[user];
    }
    
    function estimateGasBridgeFee(
        uint16 _dstChainId,
        bool _useZro,
        bytes memory _adapterParams
    ) public view virtual returns (uint256 nativeFee, uint256 zroFee) {
        bytes memory payload = abi.encode(msg.sender, 0);
        return lzEndpoint.estimateFees(_dstChainId, payable(address(this)), payload, _useZro, _adapterParams);
    }

    function bridgeGas(
        uint16 _dstChainId,
        address _zroPaymentAddress,
        bytes memory _adapterParams
    ) public payable {
        _checkGasLimit(_dstChainId, FUNCTION_TYPE_SEND, _adapterParams, dstChainIdToTransferGas[_dstChainId]);
        _lzSend(
            _dstChainId,
            abi.encode(msg.sender, 0),
            payable(address(this)),
            _zroPaymentAddress,
            _adapterParams,
            msg.value
        );
    }

    function tokenURI(uint256 id) public view virtual override returns (string memory) {
        return string(abi.encodePacked(_baseURI(), Strings.toString(id), ".json"));
    }

    function _baseURI() internal pure override returns (string memory) {
        return "ipfs://bafybeidbm7djh7bzumrt76xlj5hfqkzh5sqtu44gmgkxcd4mkxmc24igva/";        
    }

    function withdraw() public payable onlyOwner {
        (bool success, ) = payable(msg.sender).call{value: address(this).balance}("");
        require(success);
    }
    
    function setFee(uint256 _fee) external onlyOwner {
        fee = _fee;
    }
}

// SPDX-License-Identifier: MIT
import "./ONFT721Core.sol";
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "../contracts/interfaces/IONFT721.sol";

pragma solidity ^0.8.18;

// NOTE: this ONFT contract has no public minting logic.
// must implement your own minting logic in child classes
contract ONFT721 is ONFT721Core, ERC721, IONFT721 {
    constructor(
        string memory _name,
        string memory _symbol,
        uint256 _minGasToTransfer,
        address _lzEndpoint
    ) ERC721(_name, _symbol) ONFT721Core(_minGasToTransfer, _lzEndpoint) {}

    function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override(ONFT721Core, ERC721, IERC165)
        returns (bool)
    {
        return interfaceId == type(IONFT721).interfaceId || super.supportsInterface(interfaceId);
    }

    function _debitFrom(
        address _from,
        uint16,
        bytes memory,
        uint256 _tokenId
    ) internal virtual override {
        require(_isApprovedOrOwner(_msgSender(), _tokenId), "ONFT721: send caller is not owner nor approved");
        require(ERC721.ownerOf(_tokenId) == _from, "ONFT721: send from incorrect owner");
        _transfer(_from, address(this), _tokenId);
    }

    function _creditTo(
        uint16,
        address _toAddress,
        uint256 _tokenId
    ) internal virtual override {
        require(!_exists(_tokenId) || (_exists(_tokenId) && ERC721.ownerOf(_tokenId) == address(this)));
        if (!_exists(_tokenId)) {
            _safeMint(_toAddress, _tokenId);
        } else {
            _transfer(address(this), _toAddress, _tokenId);
        }
    }
}

// SPDX-License-Identifier: MIT
import "@layerzerolabs/solidity-examples/contracts/lzApp/NonblockingLzApp.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "../contracts/interfaces/IONFT721Core.sol";

pragma solidity ^0.8.18;

abstract contract ONFT721Core is NonblockingLzApp, ERC165, ReentrancyGuard, IONFT721Core {
    uint16 public constant FUNCTION_TYPE_SEND = 1;

    struct StoredCredit {
        uint16 srcChainId;
        address toAddress;
        uint256 index; // which index of the tokenIds remain
        bool creditsRemain;
    }

    uint256 public minGasToTransferAndStore; // min amount of gas required to transfer, and also store the payload
    mapping(uint16 => uint256) public dstChainIdToBatchLimit;
    mapping(uint16 => uint256) public dstChainIdToTransferGas; // per transfer amount of gas required to mint/transfer on the dst
    mapping(bytes32 => StoredCredit) public storedCredits;

    constructor(uint256 _minGasToTransferAndStore, address _lzEndpoint) NonblockingLzApp(_lzEndpoint) {
        require(_minGasToTransferAndStore > 0, "minGasToTransferAndStore must be > 0");
        minGasToTransferAndStore = _minGasToTransferAndStore;
    }

    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return interfaceId == type(IONFT721Core).interfaceId || super.supportsInterface(interfaceId);
    }

    function estimateSendFee(
        uint16 _dstChainId,
        bytes memory _toAddress,
        uint256 _tokenId,
        bool _useZro,
        bytes memory _adapterParams
    ) public view virtual override returns (uint256 nativeFee, uint256 zroFee) {
        return estimateSendBatchFee(_dstChainId, _toAddress, _toSingletonArray(_tokenId), _useZro, _adapterParams);
    }

    function estimateSendBatchFee(
        uint16 _dstChainId,
        bytes memory _toAddress,
        uint256[] memory _tokenIds,
        bool _useZro,
        bytes memory _adapterParams
    ) public view virtual override returns (uint256 nativeFee, uint256 zroFee) {
        bytes memory payload = abi.encode(_toAddress, _tokenIds);
        return lzEndpoint.estimateFees(_dstChainId, address(this), payload, _useZro, _adapterParams);
    }

    function sendFrom(
        address _from,
        uint16 _dstChainId,
        bytes memory _toAddress,
        uint256 _tokenId,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes memory _adapterParams
    ) public payable virtual override {
        _send(
            _from,
            _dstChainId,
            _toAddress,
            _toSingletonArray(_tokenId),
            _refundAddress,
            _zroPaymentAddress,
            _adapterParams
        );
    }

    function sendBatchFrom(
        address _from,
        uint16 _dstChainId,
        bytes memory _toAddress,
        uint256[] memory _tokenIds,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes memory _adapterParams
    ) public payable virtual override {
        _send(_from, _dstChainId, _toAddress, _tokenIds, _refundAddress, _zroPaymentAddress, _adapterParams);
    }

    function _send(
        address _from,
        uint16 _dstChainId,
        bytes memory _toAddress,
        uint256[] memory _tokenIds,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes memory _adapterParams
    ) internal virtual {
        // allow 1 by default
        require(_tokenIds.length > 0, "tokenIds[] is empty");
        require(
            _tokenIds.length == 1 || _tokenIds.length <= dstChainIdToBatchLimit[_dstChainId],
            "batch size exceeds dst batch limit"
        );

        for (uint256 i = 0; i < _tokenIds.length; i++) {
            _debitFrom(_from, _dstChainId, _toAddress, _tokenIds[i]);
        }

        bytes memory payload = abi.encode(_toAddress, _tokenIds);

        _checkGasLimit(
            _dstChainId,
            FUNCTION_TYPE_SEND,
            _adapterParams,
            dstChainIdToTransferGas[_dstChainId] * _tokenIds.length
        );
        _lzSend(_dstChainId, payload, _refundAddress, _zroPaymentAddress, _adapterParams, msg.value);
        emit SendToChain(_dstChainId, _from, _toAddress, _tokenIds);
    }

    function _nonblockingLzReceive(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64, /*_nonce*/
        bytes memory _payload
    ) internal virtual override {
        // decode and load the toAddress
        (bytes memory toAddressBytes, uint256[] memory tokenIds) = abi.decode(_payload, (bytes, uint256[]));

        if (tokenIds[0] == 0) {
            return;
        }
        address toAddress;
        assembly {
            toAddress := mload(add(toAddressBytes, 20))
        }

        uint256 nextIndex = _creditTill(_srcChainId, toAddress, 0, tokenIds);
        if (nextIndex < tokenIds.length) {
            // not enough gas to complete transfers, store to be cleared in another tx
            bytes32 hashedPayload = keccak256(_payload);
            storedCredits[hashedPayload] = StoredCredit(_srcChainId, toAddress, nextIndex, true);
            emit CreditStored(hashedPayload, _payload);
        }

        emit ReceiveFromChain(_srcChainId, _srcAddress, toAddress, tokenIds);
    }

    // Public function for anyone to clear and deliver the remaining batch sent tokenIds
    function clearCredits(bytes memory _payload) external virtual nonReentrant {
        bytes32 hashedPayload = keccak256(_payload);
        require(storedCredits[hashedPayload].creditsRemain, "no credits stored");

        (, uint256[] memory tokenIds) = abi.decode(_payload, (bytes, uint256[]));

        uint256 nextIndex = _creditTill(
            storedCredits[hashedPayload].srcChainId,
            storedCredits[hashedPayload].toAddress,
            storedCredits[hashedPayload].index,
            tokenIds
        );
        require(nextIndex > storedCredits[hashedPayload].index, "not enough gas to process credit transfer");

        if (nextIndex == tokenIds.length) {
            // cleared the credits, delete the element
            delete storedCredits[hashedPayload];
            emit CreditCleared(hashedPayload);
        } else {
            // store the next index to mint
            storedCredits[hashedPayload] = StoredCredit(
                storedCredits[hashedPayload].srcChainId,
                storedCredits[hashedPayload].toAddress,
                nextIndex,
                true
            );
        }
    }

    // When a srcChain has the ability to transfer more chainIds in a single tx than the dst can do.
    // Needs the ability to iterate and stop if the minGasToTransferAndStore is not met
    function _creditTill(
        uint16 _srcChainId,
        address _toAddress,
        uint256 _startIndex,
        uint256[] memory _tokenIds
    ) internal returns (uint256) {
        uint256 i = _startIndex;
        while (i < _tokenIds.length) {
            // if not enough gas to process, store this index for next loop
            if (gasleft() < minGasToTransferAndStore) break;

            _creditTo(_srcChainId, _toAddress, _tokenIds[i]);
            i++;
        }

        // indicates the next index to send of tokenIds,
        // if i == tokenIds.length, we are finished
        return i;
    }

    function setMinGasToTransferAndStore(uint256 _minGasToTransferAndStore) external onlyOwner {
        require(_minGasToTransferAndStore > 0, "minGasToTransferAndStore must be > 0");
        minGasToTransferAndStore = _minGasToTransferAndStore;
        emit SetMinGasToTransferAndStore(_minGasToTransferAndStore);
    }

    // ensures enough gas in adapter params to handle batch transfer gas amounts on the dst
    function setDstChainIdToTransferGas(uint16 _dstChainId, uint256 _dstChainIdToTransferGas) external onlyOwner {
        require(_dstChainIdToTransferGas > 0, "dstChainIdToTransferGas must be > 0");
        dstChainIdToTransferGas[_dstChainId] = _dstChainIdToTransferGas;
        emit SetDstChainIdToTransferGas(_dstChainId, _dstChainIdToTransferGas);
    }

    // limit on src the amount of tokens to batch send
    function setDstChainIdToBatchLimit(uint16 _dstChainId, uint256 _dstChainIdToBatchLimit) external onlyOwner {
        require(_dstChainIdToBatchLimit > 0, "dstChainIdToBatchLimit must be > 0");
        dstChainIdToBatchLimit[_dstChainId] = _dstChainIdToBatchLimit;
        emit SetDstChainIdToBatchLimit(_dstChainId, _dstChainIdToBatchLimit);
    }

    function _debitFrom(
        address _from,
        uint16 _dstChainId,
        bytes memory _toAddress,
        uint256 _tokenId
    ) internal virtual;

    function _creditTo(
        uint16 _srcChainId,
        address _toAddress,
        uint256 _tokenId
    ) internal virtual;

    function _toSingletonArray(uint256 element) internal pure returns (uint256[] memory) {
        uint256[] memory array = new uint256[](1);
        array[0] = element;
        return array;
    }
}

// SPDX-License-Identifier: MIT
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "../interfaces/IONFT721Core.sol";

pragma solidity ^0.8.18;

interface IONFT721 is IONFT721Core, IERC721 {}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.0;

import "./IERC721.sol";
import "./IERC721Receiver.sol";
import "./extensions/IERC721Metadata.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/Strings.sol";
import "../../utils/introspection/ERC165.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
    using Address for address;
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    // Mapping from token ID to owner address
    mapping(uint256 => address) private _owners;

    // Mapping owner address to token count
    mapping(address => uint256) private _balances;

    // Mapping from token ID to approved address
    mapping(uint256 => address) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        require(owner != address(0), "ERC721: address zero is not a valid owner");
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        address owner = _owners[tokenId];
        require(owner != address(0), "ERC721: invalid token ID");
        return owner;
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        _requireMinted(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual override {
        address owner = ERC721.ownerOf(tokenId);
        require(to != owner, "ERC721: approval to current owner");

        require(
            _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
            "ERC721: approve caller is not token owner nor approved for all"
        );

        _approve(to, tokenId);
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        _requireMinted(tokenId);

        return _tokenApprovals[tokenId];
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public virtual override {
        //solhint-disable-next-line max-line-length
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner nor approved");

        _transfer(from, to, tokenId);
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public virtual override {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) public virtual override {
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner nor approved");
        _safeTransfer(from, to, tokenId, data);
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal virtual {
        _transfer(from, to, tokenId);
        require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted (`_mint`),
     * and stop existing when they are burned (`_burn`).
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return _owners[tokenId] != address(0);
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `tokenId`.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
        address owner = ERC721.ownerOf(tokenId);
        return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
    }

    /**
     * @dev Safely mints `tokenId` and transfers it to `to`.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal virtual {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal virtual {
        _mint(to, tokenId);
        require(
            _checkOnERC721Received(address(0), to, tokenId, data),
            "ERC721: transfer to non ERC721Receiver implementer"
        );
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal virtual {
        require(to != address(0), "ERC721: mint to the zero address");
        require(!_exists(tokenId), "ERC721: token already minted");

        _beforeTokenTransfer(address(0), to, tokenId);

        _balances[to] += 1;
        _owners[tokenId] = to;

        emit Transfer(address(0), to, tokenId);

        _afterTokenTransfer(address(0), to, tokenId);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal virtual {
        address owner = ERC721.ownerOf(tokenId);

        _beforeTokenTransfer(owner, address(0), tokenId);

        // Clear approvals
        _approve(address(0), tokenId);

        _balances[owner] -= 1;
        delete _owners[tokenId];

        emit Transfer(owner, address(0), tokenId);

        _afterTokenTransfer(owner, address(0), tokenId);
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(
        address from,
        address to,
        uint256 tokenId
    ) internal virtual {
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
        require(to != address(0), "ERC721: transfer to the zero address");

        _beforeTokenTransfer(from, to, tokenId);

        // Clear approvals from the previous owner
        _approve(address(0), tokenId);

        _balances[from] -= 1;
        _balances[to] += 1;
        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        _afterTokenTransfer(from, to, tokenId);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * Emits an {Approval} event.
     */
    function _approve(address to, uint256 tokenId) internal virtual {
        _tokenApprovals[tokenId] = to;
        emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(
        address owner,
        address operator,
        bool approved
    ) internal virtual {
        require(owner != operator, "ERC721: approve to caller");
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` has not been minted yet.
     */
    function _requireMinted(uint256 tokenId) internal view virtual {
        require(_exists(tokenId), "ERC721: invalid token ID");
    }

    /**
     * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
     * The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param data bytes optional data to send along with the call
     * @return bool whether the call correctly returned the expected magic value
     */
    function _checkOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) private returns (bool) {
        if (to.isContract()) {
            try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                return retval == IERC721Receiver.onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert("ERC721: transfer to non ERC721Receiver implementer");
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        } else {
            return true;
        }
    }

    /**
     * @dev Hook that is called before any token transfer. This includes minting
     * and burning.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, ``from``'s `tokenId` will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 tokenId
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 tokenId
    ) internal virtual {}
}

// SPDX-License-Identifier: MIT

import "@openzeppelin/contracts/utils/introspection/ERC165.sol";

pragma solidity ^0.8.18;

interface IONFT721Core is IERC165 {
    /**
     * @dev Emitted when `_tokenIds[]` are moved from the `_sender` to (`_dstChainId`, `_toAddress`)
     * `_nonce` is the outbound nonce from
     */
    event SendToChain(uint16 indexed _dstChainId, address indexed _from, bytes indexed _toAddress, uint256[] _tokenIds);
    event ReceiveFromChain(
        uint16 indexed _srcChainId,
        bytes indexed _srcAddress,
        address indexed _toAddress,
        uint256[] _tokenIds
    );
    event SetMinGasToTransferAndStore(uint256 _minGasToTransferAndStore);
    event SetDstChainIdToTransferGas(uint16 _dstChainId, uint256 _dstChainIdToTransferGas);
    event SetDstChainIdToBatchLimit(uint16 _dstChainId, uint256 _dstChainIdToBatchLimit);

    /**
     * @dev Emitted when `_payload` was received from lz, but not enough gas to deliver all tokenIds
     */
    event CreditStored(bytes32 _hashedPayload, bytes _payload);
    /**
     * @dev Emitted when `_hashedPayload` has been completely delivered
     */
    event CreditCleared(bytes32 _hashedPayload);

    /**
     * @dev send token `_tokenId` to (`_dstChainId`, `_toAddress`) from `_from`
     * `_toAddress` can be any size depending on the `dstChainId`.
     * `_zroPaymentAddress` set to address(0x0) if not paying in ZRO (LayerZero Token)
     * `_adapterParams` is a flexible bytes array to indicate messaging adapter services
     */
    function sendFrom(
        address _from,
        uint16 _dstChainId,
        bytes calldata _toAddress,
        uint256 _tokenId,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes calldata _adapterParams
    ) external payable;

    /**
     * @dev send tokens `_tokenIds[]` to (`_dstChainId`, `_toAddress`) from `_from`
     * `_toAddress` can be any size depending on the `dstChainId`.
     * `_zroPaymentAddress` set to address(0x0) if not paying in ZRO (LayerZero Token)
     * `_adapterParams` is a flexible bytes array to indicate messaging adapter services
     */
    function sendBatchFrom(
        address _from,
        uint16 _dstChainId,
        bytes calldata _toAddress,
        uint256[] calldata _tokenIds,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes calldata _adapterParams
    ) external payable;

    /**
     * @dev estimate send token `_tokenId` to (`_dstChainId`, `_toAddress`)
     * _dstChainId - L0 defined chain id to send tokens too
     * _toAddress - dynamic bytes array which contains the address to whom you are sending tokens to on the dstChain
     * _tokenId - token Id to transfer
     * _useZro - indicates to use zro to pay L0 fees
     * _adapterParams - flexible bytes array to indicate messaging adapter services in L0
     */
    function estimateSendFee(
        uint16 _dstChainId,
        bytes calldata _toAddress,
        uint256 _tokenId,
        bool _useZro,
        bytes calldata _adapterParams
    ) external view returns (uint256 nativeFee, uint256 zroFee);

    /**
     * @dev estimate send token `_tokenId` to (`_dstChainId`, `_toAddress`)
     * _dstChainId - L0 defined chain id to send tokens too
     * _toAddress - dynamic bytes array which contains the address to whom you are sending tokens to on the dstChain
     * _tokenIds[] - token Ids to transfer
     * _useZro - indicates to use zro to pay L0 fees
     * _adapterParams - flexible bytes array to indicate messaging adapter services in L0
     */
    function estimateSendBatchFee(
        uint16 _dstChainId,
        bytes calldata _toAddress,
        uint256[] calldata _tokenIds,
        bool _useZro,
        bytes calldata _adapterParams
    ) external view returns (uint256 nativeFee, uint256 zroFee);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./LzApp.sol";
import "../libraries/ExcessivelySafeCall.sol";

/*
 * the default LayerZero messaging behaviour is blocking, i.e. any failed message will block the channel
 * this abstract class try-catch all fail messages and store locally for future retry. hence, non-blocking
 * NOTE: if the srcAddress is not configured properly, it will still block the message pathway from (srcChainId, srcAddress)
 */
abstract contract NonblockingLzApp is LzApp {
    using ExcessivelySafeCall for address;

    constructor(address _endpoint) LzApp(_endpoint) {}

    mapping(uint16 => mapping(bytes => mapping(uint64 => bytes32))) public failedMessages;

    event MessageFailed(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes _payload, bytes _reason);
    event RetryMessageSuccess(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes32 _payloadHash);

    // overriding the virtual function in LzReceiver
    function _blockingLzReceive(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64 _nonce,
        bytes memory _payload
    ) internal virtual override {
        (bool success, bytes memory reason) = address(this).excessivelySafeCall(
            gasleft(),
            150,
            abi.encodeWithSelector(this.nonblockingLzReceive.selector, _srcChainId, _srcAddress, _nonce, _payload)
        );
        if (!success) {
            _storeFailedMessage(_srcChainId, _srcAddress, _nonce, _payload, reason);
        }
    }

    function _storeFailedMessage(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64 _nonce,
        bytes memory _payload,
        bytes memory _reason
    ) internal virtual {
        failedMessages[_srcChainId][_srcAddress][_nonce] = keccak256(_payload);
        emit MessageFailed(_srcChainId, _srcAddress, _nonce, _payload, _reason);
    }

    function nonblockingLzReceive(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        uint64 _nonce,
        bytes calldata _payload
    ) public virtual {
        // only internal transaction
        require(_msgSender() == address(this), "NonblockingLzApp: caller must be LzApp");
        _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
    }

    //@notice override this function
    function _nonblockingLzReceive(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64 _nonce,
        bytes memory _payload
    ) internal virtual;

    function retryMessage(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        uint64 _nonce,
        bytes calldata _payload
    ) public payable virtual {
        // assert there is message to retry
        bytes32 payloadHash = failedMessages[_srcChainId][_srcAddress][_nonce];
        require(payloadHash != bytes32(0), "NonblockingLzApp: no stored message");
        require(keccak256(_payload) == payloadHash, "NonblockingLzApp: invalid payload");
        // clear the stored message
        failedMessages[_srcChainId][_srcAddress][_nonce] = bytes32(0);
        // execute the message. revert if it fails again
        _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
        emit RetryMessageSuccess(_srcChainId, _srcAddress, _nonce, payloadHash);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/access/Ownable.sol";
import "./interfaces/ILayerZeroReceiver.sol";
import "./interfaces/ILayerZeroUserApplicationConfig.sol";
import "./interfaces/ILayerZeroEndpoint.sol";
import "../libraries/BytesLib.sol";

/*
 * a generic LzReceiver implementation
 */
abstract contract LzApp is Ownable, ILayerZeroReceiver, ILayerZeroUserApplicationConfig {
    using BytesLib for bytes;

    // ua can not send payload larger than this by default, but it can be changed by the ua owner
    uint public constant DEFAULT_PAYLOAD_SIZE_LIMIT = 10000;

    ILayerZeroEndpoint public immutable lzEndpoint;
    mapping(uint16 => bytes) public trustedRemoteLookup;
    mapping(uint16 => mapping(uint16 => uint)) public minDstGasLookup;
    mapping(uint16 => uint) public payloadSizeLimitLookup;
    address public precrime;

    event SetPrecrime(address precrime);
    event SetTrustedRemote(uint16 _remoteChainId, bytes _path);
    event SetTrustedRemoteAddress(uint16 _remoteChainId, bytes _remoteAddress);
    event SetMinDstGas(uint16 _dstChainId, uint16 _type, uint _minDstGas);

    constructor(address _endpoint) {
        lzEndpoint = ILayerZeroEndpoint(_endpoint);
    }

    function lzReceive(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        uint64 _nonce,
        bytes calldata _payload
    ) public virtual override {
        // lzReceive must be called by the endpoint for security
        require(_msgSender() == address(lzEndpoint), "LzApp: invalid endpoint caller");

        bytes memory trustedRemote = trustedRemoteLookup[_srcChainId];
        // if will still block the message pathway from (srcChainId, srcAddress). should not receive message from untrusted remote.
        require(
            _srcAddress.length == trustedRemote.length && trustedRemote.length > 0 && keccak256(_srcAddress) == keccak256(trustedRemote),
            "LzApp: invalid source sending contract"
        );

        _blockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
    }

    // abstract function - the default behaviour of LayerZero is blocking. See: NonblockingLzApp if you dont need to enforce ordered messaging
    function _blockingLzReceive(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64 _nonce,
        bytes memory _payload
    ) internal virtual;

    function _lzSend(
        uint16 _dstChainId,
        bytes memory _payload,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes memory _adapterParams,
        uint _nativeFee
    ) internal virtual {
        bytes memory trustedRemote = trustedRemoteLookup[_dstChainId];
        require(trustedRemote.length != 0, "LzApp: destination chain is not a trusted source");
        _checkPayloadSize(_dstChainId, _payload.length);
        lzEndpoint.send{value: _nativeFee}(_dstChainId, trustedRemote, _payload, _refundAddress, _zroPaymentAddress, _adapterParams);
    }

    function _checkGasLimit(
        uint16 _dstChainId,
        uint16 _type,
        bytes memory _adapterParams,
        uint _extraGas
    ) internal view virtual {
        uint providedGasLimit = _getGasLimit(_adapterParams);
        uint minGasLimit = minDstGasLookup[_dstChainId][_type];
        require(minGasLimit > 0, "LzApp: minGasLimit not set");
        require(providedGasLimit >= minGasLimit + _extraGas, "LzApp: gas limit is too low");
    }

    function _getGasLimit(bytes memory _adapterParams) internal pure virtual returns (uint gasLimit) {
        require(_adapterParams.length >= 34, "LzApp: invalid adapterParams");
        assembly {
            gasLimit := mload(add(_adapterParams, 34))
        }
    }

    function _checkPayloadSize(uint16 _dstChainId, uint _payloadSize) internal view virtual {
        uint payloadSizeLimit = payloadSizeLimitLookup[_dstChainId];
        if (payloadSizeLimit == 0) {
            // use default if not set
            payloadSizeLimit = DEFAULT_PAYLOAD_SIZE_LIMIT;
        }
        require(_payloadSize <= payloadSizeLimit, "LzApp: payload size is too large");
    }

    //---------------------------UserApplication config----------------------------------------
    function getConfig(
        uint16 _version,
        uint16 _chainId,
        address,
        uint _configType
    ) external view returns (bytes memory) {
        return lzEndpoint.getConfig(_version, _chainId, address(this), _configType);
    }

    // generic config for LayerZero user Application
    function setConfig(
        uint16 _version,
        uint16 _chainId,
        uint _configType,
        bytes calldata _config
    ) external override onlyOwner {
        lzEndpoint.setConfig(_version, _chainId, _configType, _config);
    }

    function setSendVersion(uint16 _version) external override onlyOwner {
        lzEndpoint.setSendVersion(_version);
    }

    function setReceiveVersion(uint16 _version) external override onlyOwner {
        lzEndpoint.setReceiveVersion(_version);
    }

    function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external override onlyOwner {
        lzEndpoint.forceResumeReceive(_srcChainId, _srcAddress);
    }

    // _path = abi.encodePacked(remoteAddress, localAddress)
    // this function set the trusted path for the cross-chain communication
    function setTrustedRemote(uint16 _remoteChainId, bytes calldata _path) external onlyOwner {
        trustedRemoteLookup[_remoteChainId] = _path;
        emit SetTrustedRemote(_remoteChainId, _path);
    }

    function setTrustedRemoteAddress(uint16 _remoteChainId, bytes calldata _remoteAddress) external onlyOwner {
        trustedRemoteLookup[_remoteChainId] = abi.encodePacked(_remoteAddress, address(this));
        emit SetTrustedRemoteAddress(_remoteChainId, _remoteAddress);
    }

    function getTrustedRemoteAddress(uint16 _remoteChainId) external view returns (bytes memory) {
        bytes memory path = trustedRemoteLookup[_remoteChainId];
        require(path.length != 0, "LzApp: no trusted path record");
        return path.slice(0, path.length - 20); // the last 20 bytes should be address(this)
    }

    function setPrecrime(address _precrime) external onlyOwner {
        precrime = _precrime;
        emit SetPrecrime(_precrime);
    }

    function setMinDstGas(
        uint16 _dstChainId,
        uint16 _packetType,
        uint _minGas
    ) external onlyOwner {
        minDstGasLookup[_dstChainId][_packetType] = _minGas;
        emit SetMinDstGas(_dstChainId, _packetType, _minGas);
    }

    // if the size is 0, it means default size limit
    function setPayloadSizeLimit(uint16 _dstChainId, uint _size) external onlyOwner {
        payloadSizeLimitLookup[_dstChainId] = _size;
    }

    //--------------------------- VIEW FUNCTION ----------------------------------------
    function isTrustedRemote(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool) {
        bytes memory trustedSource = trustedRemoteLookup[_srcChainId];
        return keccak256(trustedSource) == keccak256(_srcAddress);
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.7.6;

library ExcessivelySafeCall {
    uint constant LOW_28_MASK = 0x00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff;

    /// @notice Use when you _really_ really _really_ don't trust the called
    /// contract. This prevents the called contract from causing reversion of
    /// the caller in as many ways as we can.
    /// @dev The main difference between this and a solidity low-level call is
    /// that we limit the number of bytes that the callee can cause to be
    /// copied to caller memory. This prevents stupid things like malicious
    /// contracts returning 10,000,000 bytes causing a local OOG when copying
    /// to memory.
    /// @param _target The address to call
    /// @param _gas The amount of gas to forward to the remote contract
    /// @param _maxCopy The maximum number of bytes of returndata to copy
    /// to memory.
    /// @param _calldata The data to send to the remote contract
    /// @return success and returndata, as `.call()`. Returndata is capped to
    /// `_maxCopy` bytes.
    function excessivelySafeCall(
        address _target,
        uint _gas,
        uint16 _maxCopy,
        bytes memory _calldata
    ) internal returns (bool, bytes memory) {
        // set up for assembly call
        uint _toCopy;
        bool _success;
        bytes memory _returnData = new bytes(_maxCopy);
        // dispatch message to recipient
        // by assembly calling "handle" function
        // we call via assembly to avoid memcopying a very large returndata
        // returned by a malicious contract
        assembly {
            _success := call(
                _gas, // gas
                _target, // recipient
                0, // ether value
                add(_calldata, 0x20), // inloc
                mload(_calldata), // inlen
                0, // outloc
                0 // outlen
            )
            // limit our copy to 256 bytes
            _toCopy := returndatasize()
            if gt(_toCopy, _maxCopy) {
                _toCopy := _maxCopy
            }
            // Store the length of the copied bytes
            mstore(_returnData, _toCopy)
            // copy the bytes from returndata[0:_toCopy]
            returndatacopy(add(_returnData, 0x20), 0, _toCopy)
        }
        return (_success, _returnData);
    }

    /// @notice Use when you _really_ really _really_ don't trust the called
    /// contract. This prevents the called contract from causing reversion of
    /// the caller in as many ways as we can.
    /// @dev The main difference between this and a solidity low-level call is
    /// that we limit the number of bytes that the callee can cause to be
    /// copied to caller memory. This prevents stupid things like malicious
    /// contracts returning 10,000,000 bytes causing a local OOG when copying
    /// to memory.
    /// @param _target The address to call
    /// @param _gas The amount of gas to forward to the remote contract
    /// @param _maxCopy The maximum number of bytes of returndata to copy
    /// to memory.
    /// @param _calldata The data to send to the remote contract
    /// @return success and returndata, as `.call()`. Returndata is capped to
    /// `_maxCopy` bytes.
    function excessivelySafeStaticCall(
        address _target,
        uint _gas,
        uint16 _maxCopy,
        bytes memory _calldata
    ) internal view returns (bool, bytes memory) {
        // set up for assembly call
        uint _toCopy;
        bool _success;
        bytes memory _returnData = new bytes(_maxCopy);
        // dispatch message to recipient
        // by assembly calling "handle" function
        // we call via assembly to avoid memcopying a very large returndata
        // returned by a malicious contract
        assembly {
            _success := staticcall(
                _gas, // gas
                _target, // recipient
                add(_calldata, 0x20), // inloc
                mload(_calldata), // inlen
                0, // outloc
                0 // outlen
            )
            // limit our copy to 256 bytes
            _toCopy := returndatasize()
            if gt(_toCopy, _maxCopy) {
                _toCopy := _maxCopy
            }
            // Store the length of the copied bytes
            mstore(_returnData, _toCopy)
            // copy the bytes from returndata[0:_toCopy]
            returndatacopy(add(_returnData, 0x20), 0, _toCopy)
        }
        return (_success, _returnData);
    }

    /**
     * @notice Swaps function selectors in encoded contract calls
     * @dev Allows reuse of encoded calldata for functions with identical
     * argument types but different names. It simply swaps out the first 4 bytes
     * for the new selector. This function modifies memory in place, and should
     * only be used with caution.
     * @param _newSelector The new 4-byte selector
     * @param _buf The encoded contract args
     */
    function swapSelector(bytes4 _newSelector, bytes memory _buf) internal pure {
        require(_buf.length >= 4);
        uint _mask = LOW_28_MASK;
        assembly {
            // load the first word of
            let _word := mload(add(_buf, 0x20))
            // mask out the top 4 bytes
            // /x
            _word := and(_word, _mask)
            _word := or(_newSelector, _word)
            mstore(add(_buf, 0x20), _word)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: Unlicense
/*
 * @title Solidity Bytes Arrays Utils
 * @author Gonçalo Sá <[email protected]>
 *
 * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
 *      The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
 */
pragma solidity >=0.8.0 <0.9.0;

library BytesLib {
    function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
        bytes memory tempBytes;

        assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
            tempBytes := mload(0x40)

            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
            let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
            let end := add(mc, length)

            for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                mstore(mc, mload(cc))
            }

            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
            mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(
                0x40,
                and(
                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                    not(31) // Round down to the nearest 32 bytes.
                )
            )
        }

        return tempBytes;
    }

    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
        assembly {
            // Read the first 32 bytes of _preBytes storage, which is the length
            // of the array. (We don't need to use the offset into the slot
            // because arrays use the entire slot.)
            let fslot := sload(_preBytes.slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)
            let newlength := add(slength, mlength)
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
            switch add(lt(slength, 32), lt(newlength, 32))
            case 2 {
                // Since the new array still fits in the slot, we just need to
                // update the contents of the slot.
                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                sstore(
                    _preBytes.slot,
                    // all the modifications to the slot are inside this
                    // next block
                    add(
                        // we can just add to the slot contents because the
                        // bytes we want to change are the LSBs
                        fslot,
                        add(
                            mul(
                                div(
                                    // load the bytes from memory
                                    mload(add(_postBytes, 0x20)),
                                    // zero all bytes to the right
                                    exp(0x100, sub(32, mlength))
                                ),
                                // and now shift left the number of bytes to
                                // leave space for the length in the slot
                                exp(0x100, sub(32, newlength))
                            ),
                            // increase length by the double of the memory
                            // bytes length
                            mul(mlength, 2)
                        )
                    )
                )
            }
            case 1 {
                // The stored value fits in the slot, but the combined value
                // will exceed it.
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // The contents of the _postBytes array start 32 bytes into
                // the structure. Our first read should obtain the `submod`
                // bytes that can fit into the unused space in the last word
                // of the stored array. To get this, we read 32 bytes starting
                // from `submod`, so the data we read overlaps with the array
                // contents by `submod` bytes. Masking the lowest-order
                // `submod` bytes allows us to add that value directly to the
                // stored value.

                let submod := sub(32, slength)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00), and(mload(mc), mask)))

                for {
                    mc := add(mc, 0x20)
                    sc := add(sc, 1)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
            default {
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                // Start copying to the last used word of the stored array.
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // Copy over the first `submod` bytes of the new data as in
                // case 1 above.
                let slengthmod := mod(slength, 32)
                let mlengthmod := mod(mlength, 32)
                let submod := sub(32, slengthmod)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(sload(sc), and(mload(mc), mask)))

                for {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
        }
    }

    function slice(
        bytes memory _bytes,
        uint _start,
        uint _length
    ) internal pure returns (bytes memory) {
        require(_length + 31 >= _length, "slice_overflow");
        require(_bytes.length >= _start + _length, "slice_outOfBounds");

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)
                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(bytes memory _bytes, uint _start) internal pure returns (address) {
        require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
        address tempAddress;

        assembly {
            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
        }

        return tempAddress;
    }

    function toUint8(bytes memory _bytes, uint _start) internal pure returns (uint8) {
        require(_bytes.length >= _start + 1, "toUint8_outOfBounds");
        uint8 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x1), _start))
        }

        return tempUint;
    }

    function toUint16(bytes memory _bytes, uint _start) internal pure returns (uint16) {
        require(_bytes.length >= _start + 2, "toUint16_outOfBounds");
        uint16 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x2), _start))
        }

        return tempUint;
    }

    function toUint32(bytes memory _bytes, uint _start) internal pure returns (uint32) {
        require(_bytes.length >= _start + 4, "toUint32_outOfBounds");
        uint32 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x4), _start))
        }

        return tempUint;
    }

    function toUint64(bytes memory _bytes, uint _start) internal pure returns (uint64) {
        require(_bytes.length >= _start + 8, "toUint64_outOfBounds");
        uint64 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x8), _start))
        }

        return tempUint;
    }

    function toUint96(bytes memory _bytes, uint _start) internal pure returns (uint96) {
        require(_bytes.length >= _start + 12, "toUint96_outOfBounds");
        uint96 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0xc), _start))
        }

        return tempUint;
    }

    function toUint128(bytes memory _bytes, uint _start) internal pure returns (uint128) {
        require(_bytes.length >= _start + 16, "toUint128_outOfBounds");
        uint128 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x10), _start))
        }

        return tempUint;
    }

    function toUint256(bytes memory _bytes, uint _start) internal pure returns (uint) {
        require(_bytes.length >= _start + 32, "toUint256_outOfBounds");
        uint tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }

        return tempUint;
    }

    function toBytes32(bytes memory _bytes, uint _start) internal pure returns (bytes32) {
        require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");
        bytes32 tempBytes32;

        assembly {
            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
        }

        return tempBytes32;
    }

    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
        bool success = true;

        assembly {
            let length := mload(_preBytes)

            // if lengths don't match the arrays are not equal
            switch eq(length, mload(_postBytes))
            case 1 {
                // cb is a circuit breaker in the for loop since there's
                //  no said feature for inline assembly loops
                // cb = 1 - don't breaker
                // cb = 0 - break
                let cb := 1

                let mc := add(_preBytes, 0x20)
                let end := add(mc, length)

                for {
                    let cc := add(_postBytes, 0x20)
                    // the next line is the loop condition:
                    // while(uint256(mc < end) + cb == 2)
                } eq(add(lt(mc, end), cb), 2) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    // if any of these checks fails then arrays are not equal
                    if iszero(eq(mload(mc), mload(cc))) {
                        // unsuccess:
                        success := 0
                        cb := 0
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
        bool success = true;

        assembly {
            // we know _preBytes_offset is 0
            let fslot := sload(_preBytes.slot)
            // Decode the length of the stored array like in concatStorage().
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)

            // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
                // slength can contain both the length and contents of the array
                // if length < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                        // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                            success := 0
                        }
                    }
                    default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1

                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                        // the next line is the loop condition:
                        // while(uint256(mc < end) + cb == 2)
                        for {

                        } eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.5.0;

import "./ILayerZeroUserApplicationConfig.sol";

interface ILayerZeroEndpoint is ILayerZeroUserApplicationConfig {
    // @notice send a LayerZero message to the specified address at a LayerZero endpoint.
    // @param _dstChainId - the destination chain identifier
    // @param _destination - the address on destination chain (in bytes). address length/format may vary by chains
    // @param _payload - a custom bytes payload to send to the destination contract
    // @param _refundAddress - if the source transaction is cheaper than the amount of value passed, refund the additional amount to this address
    // @param _zroPaymentAddress - the address of the ZRO token holder who would pay for the transaction
    // @param _adapterParams - parameters for custom functionality. e.g. receive airdropped native gas from the relayer on destination
    function send(
        uint16 _dstChainId,
        bytes calldata _destination,
        bytes calldata _payload,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes calldata _adapterParams
    ) external payable;

    // @notice used by the messaging library to publish verified payload
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source contract (as bytes) at the source chain
    // @param _dstAddress - the address on destination chain
    // @param _nonce - the unbound message ordering nonce
    // @param _gasLimit - the gas limit for external contract execution
    // @param _payload - verified payload to send to the destination contract
    function receivePayload(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        address _dstAddress,
        uint64 _nonce,
        uint _gasLimit,
        bytes calldata _payload
    ) external;

    // @notice get the inboundNonce of a lzApp from a source chain which could be EVM or non-EVM chain
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source chain contract address
    function getInboundNonce(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (uint64);

    // @notice get the outboundNonce from this source chain which, consequently, is always an EVM
    // @param _srcAddress - the source chain contract address
    function getOutboundNonce(uint16 _dstChainId, address _srcAddress) external view returns (uint64);

    // @notice gets a quote in source native gas, for the amount that send() requires to pay for message delivery
    // @param _dstChainId - the destination chain identifier
    // @param _userApplication - the user app address on this EVM chain
    // @param _payload - the custom message to send over LayerZero
    // @param _payInZRO - if false, user app pays the protocol fee in native token
    // @param _adapterParam - parameters for the adapter service, e.g. send some dust native token to dstChain
    function estimateFees(
        uint16 _dstChainId,
        address _userApplication,
        bytes calldata _payload,
        bool _payInZRO,
        bytes calldata _adapterParam
    ) external view returns (uint nativeFee, uint zroFee);

    // @notice get this Endpoint's immutable source identifier
    function getChainId() external view returns (uint16);

    // @notice the interface to retry failed message on this Endpoint destination
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source chain contract address
    // @param _payload - the payload to be retried
    function retryPayload(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        bytes calldata _payload
    ) external;

    // @notice query if any STORED payload (message blocking) at the endpoint.
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source chain contract address
    function hasStoredPayload(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool);

    // @notice query if the _libraryAddress is valid for sending msgs.
    // @param _userApplication - the user app address on this EVM chain
    function getSendLibraryAddress(address _userApplication) external view returns (address);

    // @notice query if the _libraryAddress is valid for receiving msgs.
    // @param _userApplication - the user app address on this EVM chain
    function getReceiveLibraryAddress(address _userApplication) external view returns (address);

    // @notice query if the non-reentrancy guard for send() is on
    // @return true if the guard is on. false otherwise
    function isSendingPayload() external view returns (bool);

    // @notice query if the non-reentrancy guard for receive() is on
    // @return true if the guard is on. false otherwise
    function isReceivingPayload() external view returns (bool);

    // @notice get the configuration of the LayerZero messaging library of the specified version
    // @param _version - messaging library version
    // @param _chainId - the chainId for the pending config change
    // @param _userApplication - the contract address of the user application
    // @param _configType - type of configuration. every messaging library has its own convention.
    function getConfig(
        uint16 _version,
        uint16 _chainId,
        address _userApplication,
        uint _configType
    ) external view returns (bytes memory);

    // @notice get the send() LayerZero messaging library version
    // @param _userApplication - the contract address of the user application
    function getSendVersion(address _userApplication) external view returns (uint16);

    // @notice get the lzReceive() LayerZero messaging library version
    // @param _userApplication - the contract address of the user application
    function getReceiveVersion(address _userApplication) external view returns (uint16);
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.5.0;

interface ILayerZeroReceiver {
    // @notice LayerZero endpoint will invoke this function to deliver the message on the destination
    // @param _srcChainId - the source endpoint identifier
    // @param _srcAddress - the source sending contract address from the source chain
    // @param _nonce - the ordered message nonce
    // @param _payload - the signed payload is the UA bytes has encoded to be sent
    function lzReceive(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        uint64 _nonce,
        bytes calldata _payload
    ) external;
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.5.0;

interface ILayerZeroUserApplicationConfig {
    // @notice set the configuration of the LayerZero messaging library of the specified version
    // @param _version - messaging library version
    // @param _chainId - the chainId for the pending config change
    // @param _configType - type of configuration. every messaging library has its own convention.
    // @param _config - configuration in the bytes. can encode arbitrary content.
    function setConfig(
        uint16 _version,
        uint16 _chainId,
        uint _configType,
        bytes calldata _config
    ) external;

    // @notice set the send() LayerZero messaging library version to _version
    // @param _version - new messaging library version
    function setSendVersion(uint16 _version) external;

    // @notice set the lzReceive() LayerZero messaging library version to _version
    // @param _version - new messaging library version
    function setReceiveVersion(uint16 _version) external;

    // @notice Only when the UA needs to resume the message flow in blocking mode and clear the stored payload
    // @param _srcChainId - the chainId of the source chain
    // @param _srcAddress - the contract address of the source contract at the source chain
    function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        // Inspired by OraclizeAPI's implementation - MIT licence
        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol

        if (value == 0) {
            return "0";
        }
        uint256 temp = value;
        uint256 digits;
        while (temp != 0) {
            digits++;
            temp /= 10;
        }
        bytes memory buffer = new bytes(digits);
        while (value != 0) {
            digits -= 1;
            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
            value /= 10;
        }
        return string(buffer);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        if (value == 0) {
            return "0x00";
        }
        uint256 temp = value;
        uint256 length = 0;
        while (temp != 0) {
            length++;
            temp >>= 8;
        }
        return toHexString(value, length);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _HEX_SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):