ETH Price: $3,913.35 (-0.11%)

Contract Diff Checker

Contract Name:
Rewarder

Contract Source Code:

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor () internal {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

//SPDX-License-Identifier: MIT
pragma solidity >=0.6.11 <=0.6.12;

interface IAddressRegistry { }

contract BaseController {

    address public immutable manager;
    IAddressRegistry public immutable addressRegistry;

    constructor(address _manager, address _addressRegistry) public {
        require(_manager != address(0), "INVALID_ADDRESS");
        require(_addressRegistry != address(0), "INVALID_ADDRESS");

        manager = _manager;
        addressRegistry = IAddressRegistry(_addressRegistry);
    }

    modifier onlyManager() {
        require(msg.sender == manager, "NOT_MANAGER_ADDRESS");
        _;
    }
}

// Sources flattened with hardhat v2.0.11 https://hardhat.org

// File @boringcrypto/boring-solidity/contracts/libraries/[email protected]

// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;
// a library for performing overflow-safe math, updated with awesomeness from of DappHub (https://github.com/dapphub/ds-math)
library BoringMath {
    function add(uint256 a, uint256 b) internal pure returns (uint256 c) {require((c = a + b) >= b, "BoringMath: Add Overflow");}
    function sub(uint256 a, uint256 b) internal pure returns (uint256 c) {require((c = a - b) <= a, "BoringMath: Underflow");}
    function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {require(b == 0 || (c = a * b)/b == a, "BoringMath: Mul Overflow");}
    function to128(uint256 a) internal pure returns (uint128 c) {
        require(a <= uint128(-1), "BoringMath: uint128 Overflow");
        c = uint128(a);
    }
    function to64(uint256 a) internal pure returns (uint64 c) {
        require(a <= uint64(-1), "BoringMath: uint64 Overflow");
        c = uint64(a);
    }
    function to32(uint256 a) internal pure returns (uint32 c) {
        require(a <= uint32(-1), "BoringMath: uint32 Overflow");
        c = uint32(a);
    }
}

library BoringMath128 {
    function add(uint128 a, uint128 b) internal pure returns (uint128 c) {require((c = a + b) >= b, "BoringMath: Add Overflow");}
    function sub(uint128 a, uint128 b) internal pure returns (uint128 c) {require((c = a - b) <= a, "BoringMath: Underflow");}
}

library BoringMath64 {
    function add(uint64 a, uint64 b) internal pure returns (uint64 c) {require((c = a + b) >= b, "BoringMath: Add Overflow");}
    function sub(uint64 a, uint64 b) internal pure returns (uint64 c) {require((c = a - b) <= a, "BoringMath: Underflow");}
}

library BoringMath32 {
    function add(uint32 a, uint32 b) internal pure returns (uint32 c) {require((c = a + b) >= b, "BoringMath: Add Overflow");}
    function sub(uint32 a, uint32 b) internal pure returns (uint32 c) {require((c = a - b) <= a, "BoringMath: Underflow");}
}


// File @boringcrypto/boring-solidity/contracts/interfaces/[email protected]

pragma solidity 0.6.12;

interface IERC20 {
    function totalSupply() external view returns (uint256);
    function balanceOf(address account) external view returns (uint256);
    function allowance(address owner, address spender) external view returns (uint256);
    function approve(address spender, uint256 amount) external returns (bool);
    function transferFrom(address owner, address spender, uint256 amount) external returns (bool);
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(address indexed owner, address indexed spender, uint256 value);

    // EIP 2612
    function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;
}


// File @boringcrypto/boring-solidity/contracts/libraries/[email protected]

pragma solidity 0.6.12;
library BoringERC20 {
    function safeSymbol(IERC20 token) internal view returns(string memory) {
        (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(0x95d89b41));
        return success && data.length > 0 ? abi.decode(data, (string)) : "???";
    }

    function safeName(IERC20 token) internal view returns(string memory) {
        (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(0x06fdde03));
        return success && data.length > 0 ? abi.decode(data, (string)) : "???";
    }

    function safeDecimals(IERC20 token) internal view returns (uint8) {
        (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(0x313ce567));
        return success && data.length == 32 ? abi.decode(data, (uint8)) : 18;
    }

    function safeTransfer(IERC20 token, address to, uint256 amount) internal {
        (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(0xa9059cbb, to, amount));
        require(success && (data.length == 0 || abi.decode(data, (bool))), "BoringERC20: Transfer failed");
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 amount) internal {
        (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(0x23b872dd, from, to, amount));
        require(success && (data.length == 0 || abi.decode(data, (bool))), "BoringERC20: TransferFrom failed");
    }
}


// File @boringcrypto/boring-solidity/contracts/[email protected]

// Audit on 5-Jan-2021 by Keno and BoringCrypto

// P1 - P3: OK
pragma solidity 0.6.12;
// solhint-disable avoid-low-level-calls
// T1 - T4: OK
contract BaseBoringBatchable {
    function _getRevertMsg(bytes memory _returnData) internal pure returns (string memory) {
        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
        if (_returnData.length < 68) return "Transaction reverted silently";

        assembly {
            // Slice the sighash.
            _returnData := add(_returnData, 0x04)
        }
        return abi.decode(_returnData, (string)); // All that remains is the revert string
    }    
    
    // F3 - F9: OK
    // F1: External is ok here because this is the batch function, adding it to a batch makes no sense
    // F2: Calls in the batch may be payable, delegatecall operates in the same context, so each call in the batch has access to msg.value
    // C1 - C21: OK
    // C3: The length of the loop is fully under user control, so can't be exploited
    // C7: Delegatecall is only used on the same contract, so it's safe
    function batch(bytes[] calldata calls, bool revertOnFail) external payable returns(bool[] memory successes, bytes[] memory results) {
        // Interactions
        successes = new bool[](calls.length);
        results = new bytes[](calls.length);
        for (uint256 i = 0; i < calls.length; i++) {
            (bool success, bytes memory result) = address(this).delegatecall(calls[i]);
            require(success || !revertOnFail, _getRevertMsg(result));
            successes[i] = success;
            results[i] = result;
        }
    }
}

// T1 - T4: OK
contract BoringBatchable is BaseBoringBatchable {
    // F1 - F9: OK
    // F6: Parameters can be used front-run the permit and the user's permit will fail (due to nonce or other revert)
    //     if part of a batch this could be used to grief once as the second call would not need the permit
    // C1 - C21: OK
    function permitToken(IERC20 token, address from, address to, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
        // Interactions
        // X1 - X5
        token.permit(from, to, amount, deadline, v, r, s);
    }
}


// File @boringcrypto/boring-solidity/contracts/[email protected]

// Audit on 5-Jan-2021 by Keno and BoringCrypto

// P1 - P3: OK
pragma solidity 0.6.12;

// Source: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol + Claimable.sol
// Edited by BoringCrypto

// T1 - T4: OK
contract BoringOwnableData {
    // V1 - V5: OK
    address public owner;
    // V1 - V5: OK
    address public pendingOwner;
}

// T1 - T4: OK
contract BoringOwnable is BoringOwnableData {
    // E1: OK
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    constructor () public {
        owner = msg.sender;
        emit OwnershipTransferred(address(0), msg.sender);
    }

    // F1 - F9: OK
    // C1 - C21: OK
    function transferOwnership(address newOwner, bool direct, bool renounce) public onlyOwner {
        if (direct) {
            // Checks
            require(newOwner != address(0) || renounce, "Ownable: zero address");

            // Effects
            emit OwnershipTransferred(owner, newOwner);
            owner = newOwner;
            pendingOwner = address(0);
        } else {
            // Effects
            pendingOwner = newOwner;
        }
    }

    // F1 - F9: OK
    // C1 - C21: OK
    function claimOwnership() public {
        address _pendingOwner = pendingOwner;
        
        // Checks
        require(msg.sender == _pendingOwner, "Ownable: caller != pending owner");

        // Effects
        emit OwnershipTransferred(owner, _pendingOwner);
        owner = _pendingOwner;
        pendingOwner = address(0);
    }

    // M1 - M5: OK
    // C1 - C21: OK
    modifier onlyOwner() {
        require(msg.sender == owner, "Ownable: caller is not the owner");
        _;
    }
}


// File contracts/libraries/SignedSafeMath.sol

pragma solidity 0.6.12;

library SignedSafeMath {
    int256 constant private _INT256_MIN = -2**255;

    /**
     * @dev Returns the multiplication of two signed integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(int256 a, int256 b) internal pure returns (int256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow");

        int256 c = a * b;
        require(c / a == b, "SignedSafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two signed integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(int256 a, int256 b) internal pure returns (int256) {
        require(b != 0, "SignedSafeMath: division by zero");
        require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow");

        int256 c = a / b;

        return c;
    }

    /**
     * @dev Returns the subtraction of two signed integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");

        return c;
    }

    /**
     * @dev Returns the addition of two signed integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");

        return c;
    }

    function toUInt256(int256 a) internal pure returns (uint256) {
        require(a >= 0, "Integer < 0");
        return uint256(a);
    }
}


// File contracts/interfaces/IRewarder.sol

pragma solidity 0.6.12;

interface IRewarder {
    using BoringERC20 for IERC20;
    function rewardToken() external returns(address);
    function onSushiReward(uint256 pid, address user, address recipient, uint256 sushiAmount, uint256 newLpAmount) external;
    function pendingTokens(uint256 pid, address user, uint256 sushiAmount) external view returns (IERC20[] memory, uint256[] memory);
}


// File contracts/interfaces/IMasterChef.sol

pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;

interface IMasterChef {
    using BoringERC20 for IERC20;
    struct UserInfo {
        uint256 amount;     // How many LP tokens the user has provided.
        uint256 rewardDebt; // Reward debt. See explanation below.
    }

    struct PoolInfo {
        IERC20 lpToken;           // Address of LP token contract.
        uint256 allocPoint;       // How many allocation points assigned to this pool. SUSHI to distribute per block.
        uint256 lastRewardBlock;  // Last block number that SUSHI distribution occurs.
        uint256 accSushiPerShare; // Accumulated SUSHI per share, times 1e12. See below.
    }

    function poolInfo(uint256 pid) external view returns (IMasterChef.PoolInfo memory);
    function totalAllocPoint() external view returns (uint256);
    function deposit(uint256 _pid, uint256 _amount) external;
}


// File contracts/Masterchef.sol

pragma solidity 0.6.12;
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";

/// @notice The (older) MasterChef contract gives out a constant number of SUSHI tokens per block.
/// It is the only address with minting rights for SUSHI.
/// The idea for this MasterChef V2 (MCV2) contract is therefore to be the owner of a dummy token
/// that is deposited into the MasterChef V1 (MCV1) contract.
/// The allocation point for this pool on MCV1 is the total allocation point for all pools that receive double incentives.
contract MasterChef is BoringOwnable, BoringBatchable, ReentrancyGuard {
    using BoringMath for uint256;
    using BoringMath128 for uint128;
    using BoringERC20 for IERC20;
    using SignedSafeMath for int256;

    /// @notice Info of each MCV2 user.
    /// `amount` LP token amount the user has provided.
    /// `rewardDebt` The amount of SUSHI entitled to the user.
    struct UserInfo {
        uint256 amount;
        int256 rewardDebt;
    }

    /// @notice Info of each MCV2 pool.
    /// `allocPoint` The amount of allocation points assigned to the pool.
    /// Also known as the amount of SUSHI to distribute per block.
    struct PoolInfo {
        uint128 accSushiPerShare;
        uint64 lastRewardTime;
        uint64 allocPoint;
        IRewarder[] rewarders;
    }

    /// @notice Address of SUSHI contract.
    IERC20 public immutable SUSHI;

    /// @notice Info of each MCV2 pool.
    PoolInfo[] public poolInfo;
    /// @notice Address of the LP token for each MCV2 pool.
    IERC20[] public lpToken;

    /// @notice Info of each user that stakes LP tokens.
    mapping (uint256 => mapping (address => UserInfo)) public userInfo;
    /// @dev Total allocation points. Must be the sum of all allocation points in all pools.
    uint256 public totalAllocPoint;

    uint256 public sushiPerSecond;
    uint256 private constant ACC_SUSHI_PRECISION = 1e12;

    event Deposit(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
    event Withdraw(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
    event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
    event Harvest(address indexed user, uint256 indexed pid, uint256 amount);
    event LogPoolAddition(uint256 indexed pid, uint256 allocPoint, IERC20 indexed lpToken);
    event LogSetPool(uint256 indexed pid, uint256 allocPoint);
    event LogUpdatePool(uint256 indexed pid, uint64 lastRewardTime, uint256 lpSupply, uint256 accSushiPerShare);
    event LogSushiPerSecond(uint256 sushiPerSecond);
    event LogRewarderAdded(uint256 indexed pid, IRewarder indexed rewarder);

    /// @param _sushi The SUSHI token contract address.
    constructor(IERC20 _sushi) public {
        SUSHI = _sushi;
    }

    /// @notice Returns the number of MCV2 pools.
    function poolLength() public view returns (uint256 pools) {
        pools = poolInfo.length;
    }

    /// @notice Add a new LP to the pool. Can only be called by the owner.
    /// DO NOT add the same LP token more than once. Rewards will be messed up if you do.
    /// @param allocPoint AP of the new pool.
    /// @param _lpToken Address of the LP ERC-20 token.
    function add(uint256 allocPoint, IERC20 _lpToken) public onlyOwner {
        totalAllocPoint = totalAllocPoint.add(allocPoint);
        lpToken.push(_lpToken);

        poolInfo.push(PoolInfo({
            allocPoint: allocPoint.to64(),
            lastRewardTime: block.timestamp.to64(),
            accSushiPerShare: 0,
            rewarders: (new IRewarder[](0))
        }));
        emit LogPoolAddition(lpToken.length.sub(1), allocPoint, _lpToken);
    }

    /// @notice Add a new Rewarder instance to a given pool 
    /// @param _pid The index of the pool. See `poolInfo`.
    /// @param _rewarder Address of the rewarder delegate.
    function addRewarder(uint256 _pid, IRewarder _rewarder) public onlyOwner {
        for( uint256 i = 0; i < poolInfo[_pid].rewarders.length; i++ ) {
            require(address(poolInfo[_pid].rewarders[i]) != address(_rewarder), "already added");
        }
        poolInfo[_pid].rewarders.push(_rewarder);
        emit LogRewarderAdded(_pid, _rewarder);
    }

    /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner.
    /// @param _pid The index of the pool. See `poolInfo`.
    /// @param _allocPoint New AP of the pool.
    function set(uint256 _pid, uint256 _allocPoint) public onlyOwner {
        totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
        poolInfo[_pid].allocPoint = _allocPoint.to64();
        emit LogSetPool(_pid, _allocPoint);
    }

    /// @notice Sets the sushi per second to be distributed. Can only be called by the owner.
    /// @param _sushiPerSecond The amount of Sushi to be distributed per second.
    function setSushiPerSecond(uint256 _sushiPerSecond) public onlyOwner {
        sushiPerSecond = _sushiPerSecond;
        emit LogSushiPerSecond(_sushiPerSecond);
    }

    /// @notice View function to see pending SUSHI on frontend.
    /// @param _pid The index of the pool. See `poolInfo`.
    /// @param _user Address of user.
    /// @return pending SUSHI reward for a given user.
    function pendingSushi(uint256 _pid, address _user) external view returns (uint256 pending) {
        PoolInfo memory pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][_user];
        uint256 accSushiPerShare = pool.accSushiPerShare;
        uint256 lpSupply = lpToken[_pid].balanceOf(address(this));
        if (block.timestamp > pool.lastRewardTime && lpSupply != 0) {
            uint256 time = block.timestamp.sub(pool.lastRewardTime);
            uint256 sushiReward = time.mul(sushiPerSecond).mul(pool.allocPoint) / totalAllocPoint;
            accSushiPerShare = accSushiPerShare.add(sushiReward.mul(ACC_SUSHI_PRECISION) / lpSupply);
        }
        pending = int256(user.amount.mul(accSushiPerShare) / ACC_SUSHI_PRECISION).sub(user.rewardDebt).toUInt256();
    }

    /// @notice Update reward variables for all pools. Be careful of gas spending!
    /// @param pids Pool IDs of all to be updated. Make sure to update all active pools.
    function massUpdatePools(uint256[] calldata pids) external {
        uint256 len = pids.length;
        for (uint256 i = 0; i < len; ++i) {
            updatePool(pids[i]);
        }
    }

    /// @notice Update reward variables of the given pool.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @return pool Returns the pool that was updated.
    function updatePool(uint256 pid) public returns (PoolInfo memory pool) {
        pool = poolInfo[pid];
        if (block.timestamp > pool.lastRewardTime) {
            uint256 lpSupply = lpToken[pid].balanceOf(address(this));
            if (lpSupply > 0) {
                uint256 time = block.timestamp.sub(pool.lastRewardTime);
                uint256 sushiReward = time.mul(sushiPerSecond).mul(pool.allocPoint) / totalAllocPoint;
                pool.accSushiPerShare = pool.accSushiPerShare.add((sushiReward.mul(ACC_SUSHI_PRECISION) / lpSupply).to128());
            }
            pool.lastRewardTime = block.timestamp.to64();
            poolInfo[pid] = pool;
            emit LogUpdatePool(pid, pool.lastRewardTime, lpSupply, pool.accSushiPerShare);
        }
    }

    /// @notice Deposit LP tokens to MCV2 for SUSHI allocation.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param amount LP token amount to deposit.
    /// @param to The receiver of `amount` deposit benefit.
    function deposit(uint256 pid, uint256 amount, address to) nonReentrant public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][to];

        // Effects
        user.amount = user.amount.add(amount);
        user.rewardDebt = user.rewardDebt.add(int256(amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION));

        // Interactions
        for( uint256 i = 0; i < poolInfo[pid].rewarders.length; i++) {
            IRewarder _rewarder = poolInfo[pid].rewarders[i];
            if (address(_rewarder) != address(0)) {
                _rewarder.onSushiReward(pid, to, to, 0, user.amount);
            }
        }

        lpToken[pid].safeTransferFrom(msg.sender, address(this), amount);

        emit Deposit(msg.sender, pid, amount, to);
    }

    /// @notice Withdraw LP tokens from MCV2.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param amount LP token amount to withdraw.
    /// @param to Receiver of the LP tokens.
    function withdraw(uint256 pid, uint256 amount, address to) nonReentrant public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][msg.sender];

        // Effects
        user.rewardDebt = user.rewardDebt.sub(int256(amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION));
        user.amount = user.amount.sub(amount);

        // Interactions
        for( uint256 i = 0; i < poolInfo[pid].rewarders.length; i++) {
            IRewarder _rewarder = poolInfo[pid].rewarders[i];
            if (address(_rewarder) != address(0)) {
                _rewarder.onSushiReward(pid, msg.sender, to, 0, user.amount);
            }
        }       
        lpToken[pid].safeTransfer(to, amount);

        emit Withdraw(msg.sender, pid, amount, to);
    }

    /// @notice Harvest proceeds for transaction sender to `to`.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param to Receiver of SUSHI rewards.
    function harvest(uint256 pid, address to) nonReentrant public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][msg.sender];
        int256 accumulatedSushi = int256(user.amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION);
        uint256 _pendingSushi = accumulatedSushi.sub(user.rewardDebt).toUInt256();

        // Effects
        user.rewardDebt = accumulatedSushi;

        // Interactions
        if (_pendingSushi != 0) {
            SUSHI.safeTransfer(to, _pendingSushi);
        }
        
        for( uint256 i = 0; i < poolInfo[pid].rewarders.length; i++) {
            IRewarder _rewarder = poolInfo[pid].rewarders[i];
            if (address(_rewarder) != address(0)) {
                _rewarder.onSushiReward( pid, msg.sender, to, _pendingSushi, user.amount);
            }
        }  
        emit Harvest(msg.sender, pid, _pendingSushi);
    }
    
    /// @notice Withdraw LP tokens from MCV2 and harvest proceeds for transaction sender to `to`.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param amount LP token amount to withdraw.
    /// @param to Receiver of the LP tokens and SUSHI rewards.
    function withdrawAndHarvest(uint256 pid, uint256 amount, address to) nonReentrant public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][msg.sender];
        int256 accumulatedSushi = int256(user.amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION);
        uint256 _pendingSushi = accumulatedSushi.sub(user.rewardDebt).toUInt256();

        // Effects
        user.rewardDebt = accumulatedSushi.sub(int256(amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION));
        user.amount = user.amount.sub(amount);
        
        // Interactions
        SUSHI.safeTransfer(to, _pendingSushi);

        for( uint256 i = 0; i < poolInfo[pid].rewarders.length; i++) {
            IRewarder _rewarder = poolInfo[pid].rewarders[i];
            if (address(_rewarder) != address(0)) {
              _rewarder.onSushiReward(pid, msg.sender, to, _pendingSushi, user.amount);
            }
        }
        lpToken[pid].safeTransfer(to, amount);

        emit Withdraw(msg.sender, pid, amount, to);
        emit Harvest(msg.sender, pid, _pendingSushi);
    }

    /// @notice Withdraw without caring about rewards. EMERGENCY ONLY.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param to Receiver of the LP tokens.
    function emergencyWithdraw(uint256 pid, address to) nonReentrant public {
        UserInfo storage user = userInfo[pid][msg.sender];
        uint256 amount = user.amount;
        user.amount = 0;
        user.rewardDebt = 0;

        for( uint256 i = 0; i < poolInfo[pid].rewarders.length; i++) {
            IRewarder _rewarder = poolInfo[pid].rewarders[i];
            if (address(_rewarder) != address(0)) {
              _rewarder.onSushiReward(pid, msg.sender, to, 0, 0);
            }
        }
        // Note: transfer can fail or succeed if `amount` is zero.
        lpToken[pid].safeTransfer(to, amount);
        emit EmergencyWithdraw(msg.sender, pid, amount, to);
    }

    function getRewarder(uint256 _pid, uint256 _rid) public view returns(address) {
      return address(poolInfo[_pid].rewarders[_rid]);
    } 

}

// Sources flattened with hardhat v2.0.11 https://hardhat.org

// File @boringcrypto/boring-solidity/contracts/interfaces/[email protected]

// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;

interface IERC20 {
    function totalSupply() external view returns (uint256);
    function balanceOf(address account) external view returns (uint256);
    function allowance(address owner, address spender) external view returns (uint256);
    function approve(address spender, uint256 amount) external returns (bool);
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(address indexed owner, address indexed spender, uint256 value);

    // EIP 2612
    function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;
}


// File @boringcrypto/boring-solidity/contracts/libraries/[email protected]

library BoringERC20 {
    function safeSymbol(IERC20 token) internal view returns(string memory) {
        (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(0x95d89b41));
        return success && data.length > 0 ? abi.decode(data, (string)) : "???";
    }

    function safeName(IERC20 token) internal view returns(string memory) {
        (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(0x06fdde03));
        return success && data.length > 0 ? abi.decode(data, (string)) : "???";
    }

    function safeDecimals(IERC20 token) internal view returns (uint8) {
        (bool success, bytes memory data) = address(token).staticcall(abi.encodeWithSelector(0x313ce567));
        return success && data.length == 32 ? abi.decode(data, (uint8)) : 18;
    }

    function safeTransfer(IERC20 token, address to, uint256 amount) internal {
        (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(0xa9059cbb, to, amount));
        require(success && (data.length == 0 || abi.decode(data, (bool))), "BoringERC20: Transfer failed");
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 amount) internal {
        (bool success, bytes memory data) = address(token).call(abi.encodeWithSelector(0x23b872dd, from, to, amount));
        require(success && (data.length == 0 || abi.decode(data, (bool))), "BoringERC20: TransferFrom failed");
    }
}


// File contracts/interfaces/IRewarder.sol

interface IRewarder {
    using BoringERC20 for IERC20;
    function onSushiReward(uint256 pid, address user, address recipient, uint256 sushiAmount, uint256 newLpAmount) external;
    function pendingTokens(uint256 pid, address user, uint256 sushiAmount) external view returns (IERC20[] memory, uint256[] memory);
}


// File @boringcrypto/boring-solidity/contracts/libraries/[email protected]

// a library for performing overflow-safe math, updated with awesomeness from of DappHub (https://github.com/dapphub/ds-math)
library BoringMath {
    function add(uint256 a, uint256 b) internal pure returns (uint256 c) {require((c = a + b) >= b, "BoringMath: Add Overflow");}
    function sub(uint256 a, uint256 b) internal pure returns (uint256 c) {require((c = a - b) <= a, "BoringMath: Underflow");}
    function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {require(b == 0 || (c = a * b)/b == a, "BoringMath: Mul Overflow");}
    function to128(uint256 a) internal pure returns (uint128 c) {
        require(a <= uint128(-1), "BoringMath: uint128 Overflow");
        c = uint128(a);
    }
    function to64(uint256 a) internal pure returns (uint64 c) {
        require(a <= uint64(-1), "BoringMath: uint64 Overflow");
        c = uint64(a);
    }
    function to32(uint256 a) internal pure returns (uint32 c) {
        require(a <= uint32(-1), "BoringMath: uint32 Overflow");
        c = uint32(a);
    }
}

library BoringMath128 {
    function add(uint128 a, uint128 b) internal pure returns (uint128 c) {require((c = a + b) >= b, "BoringMath: Add Overflow");}
    function sub(uint128 a, uint128 b) internal pure returns (uint128 c) {require((c = a - b) <= a, "BoringMath: Underflow");}
}

library BoringMath64 {
    function add(uint64 a, uint64 b) internal pure returns (uint64 c) {require((c = a + b) >= b, "BoringMath: Add Overflow");}
    function sub(uint64 a, uint64 b) internal pure returns (uint64 c) {require((c = a - b) <= a, "BoringMath: Underflow");}
}

library BoringMath32 {
    function add(uint32 a, uint32 b) internal pure returns (uint32 c) {require((c = a + b) >= b, "BoringMath: Add Overflow");}
    function sub(uint32 a, uint32 b) internal pure returns (uint32 c) {require((c = a - b) <= a, "BoringMath: Underflow");}
}


// File @boringcrypto/boring-solidity/contracts/[email protected]

// Audit on 5-Jan-2021 by Keno and BoringCrypto

// P1 - P3: OK
pragma solidity 0.6.12;

// Source: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol + Claimable.sol
// Edited by BoringCrypto

// T1 - T4: OK
contract BoringOwnableData {
    // V1 - V5: OK
    address public owner;
    // V1 - V5: OK
    address public pendingOwner;
}

// T1 - T4: OK
contract BoringOwnable is BoringOwnableData {
    // E1: OK
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    constructor () public {
        owner = msg.sender;
        emit OwnershipTransferred(address(0), msg.sender);
    }

    // F1 - F9: OK
    // C1 - C21: OK
    function transferOwnership(address newOwner, bool direct, bool renounce) public onlyOwner {
        if (direct) {
            // Checks
            require(newOwner != address(0) || renounce, "Ownable: zero address");

            // Effects
            emit OwnershipTransferred(owner, newOwner);
            owner = newOwner;
            pendingOwner = address(0);
        } else {
            // Effects
            pendingOwner = newOwner;
        }
    }

    // F1 - F9: OK
    // C1 - C21: OK
    function claimOwnership() public {
        address _pendingOwner = pendingOwner;
        
        // Checks
        require(msg.sender == _pendingOwner, "Ownable: caller != pending owner");

        // Effects
        emit OwnershipTransferred(owner, _pendingOwner);
        owner = _pendingOwner;
        pendingOwner = address(0);
    }

    // M1 - M5: OK
    // C1 - C21: OK
    modifier onlyOwner() {
        require(msg.sender == owner, "Ownable: caller is not the owner");
        _;
    }
}


// File @boringcrypto/boring-solidity/contracts/[email protected]

// Audit on 5-Jan-2021 by Keno and BoringCrypto

// P1 - P3: OK
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;
// solhint-disable avoid-low-level-calls
// T1 - T4: OK
contract BaseBoringBatchable {
    function _getRevertMsg(bytes memory _returnData) internal pure returns (string memory) {
        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
        if (_returnData.length < 68) return "Transaction reverted silently";

        assembly {
            // Slice the sighash.
            _returnData := add(_returnData, 0x04)
        }
        return abi.decode(_returnData, (string)); // All that remains is the revert string
    }    
    
    // F3 - F9: OK
    // F1: External is ok here because this is the batch function, adding it to a batch makes no sense
    // F2: Calls in the batch may be payable, delegatecall operates in the same context, so each call in the batch has access to msg.value
    // C1 - C21: OK
    // C3: The length of the loop is fully under user control, so can't be exploited
    // C7: Delegatecall is only used on the same contract, so it's safe
    function batch(bytes[] calldata calls, bool revertOnFail) external payable returns(bool[] memory successes, bytes[] memory results) {
        // Interactions
        successes = new bool[](calls.length);
        results = new bytes[](calls.length);
        for (uint256 i = 0; i < calls.length; i++) {
            (bool success, bytes memory result) = address(this).delegatecall(calls[i]);
            require(success || !revertOnFail, _getRevertMsg(result));
            successes[i] = success;
            results[i] = result;
        }
    }
}

// T1 - T4: OK
contract BoringBatchable is BaseBoringBatchable {
    // F1 - F9: OK
    // F6: Parameters can be used front-run the permit and the user's permit will fail (due to nonce or other revert)
    //     if part of a batch this could be used to grief once as the second call would not need the permit
    // C1 - C21: OK
    function permitToken(IERC20 token, address from, address to, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
        // Interactions
        // X1 - X5
        token.permit(from, to, amount, deadline, v, r, s);
    }
}


// File contracts/libraries/SignedSafeMath.sol

pragma solidity 0.6.12;

library SignedSafeMath {
    int256 constant private _INT256_MIN = -2**255;

    /**
     * @dev Returns the multiplication of two signed integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(int256 a, int256 b) internal pure returns (int256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow");

        int256 c = a * b;
        require(c / a == b, "SignedSafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two signed integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(int256 a, int256 b) internal pure returns (int256) {
        require(b != 0, "SignedSafeMath: division by zero");
        require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow");

        int256 c = a / b;

        return c;
    }

    /**
     * @dev Returns the subtraction of two signed integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");

        return c;
    }

    /**
     * @dev Returns the addition of two signed integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");

        return c;
    }

    function toUInt256(int256 a) internal pure returns (uint256) {
        require(a >= 0, "Integer < 0");
        return uint256(a);
    }
}


// File contracts/interfaces/IMasterChef.sol

pragma solidity 0.6.12;

interface IMasterChef {
    using BoringERC20 for IERC20;
    struct UserInfo {
        uint256 amount;     // How many LP tokens the user has provided.
        uint256 rewardDebt; // Reward debt. See explanation below.
    }

    struct PoolInfo {
        IERC20 lpToken;           // Address of LP token contract.
        uint256 allocPoint;       // How many allocation points assigned to this pool. SUSHI to distribute per block.
        uint256 lastRewardBlock;  // Last block number that SUSHI distribution occurs.
        uint256 accSushiPerShare; // Accumulated SUSHI per share, times 1e12. See below.
    }

    function poolInfo(uint256 pid) external view returns (IMasterChef.PoolInfo memory);
    function totalAllocPoint() external view returns (uint256);
    function deposit(uint256 _pid, uint256 _amount) external;
}


// File contracts/MasterChefV2.sol

pragma solidity 0.6.12;

interface IMigratorChef {
    // Take the current LP token address and return the new LP token address.
    // Migrator should have full access to the caller's LP token.
    function migrate(IERC20 token) external returns (IERC20);
}

/// @notice The (older) MasterChef contract gives out a constant number of SUSHI tokens per block.
/// It is the only address with minting rights for SUSHI.
/// The idea for this MasterChef V2 (MCV2) contract is therefore to be the owner of a dummy token
/// that is deposited into the MasterChef V1 (MCV1) contract.
/// The allocation point for this pool on MCV1 is the total allocation point for all pools that receive double incentives.
contract MasterChefV2 is BoringOwnable, BoringBatchable {
    using BoringMath for uint256;
    using BoringMath128 for uint128;
    using BoringERC20 for IERC20;
    using SignedSafeMath for int256;

    /// @notice Info of each MCV2 user.
    /// `amount` LP token amount the user has provided.
    /// `rewardDebt` The amount of SUSHI entitled to the user.
    struct UserInfo {
        uint256 amount;
        int256 rewardDebt;
    }

    /// @notice Info of each MCV2 pool.
    /// `allocPoint` The amount of allocation points assigned to the pool.
    /// Also known as the amount of SUSHI to distribute per block.
    struct PoolInfo {
        uint128 accSushiPerShare;
        uint64 lastRewardBlock;
        uint64 allocPoint;
    }

    /// @notice Address of MCV1 contract.
    IMasterChef public immutable MASTER_CHEF;
    /// @notice Address of SUSHI contract.
    IERC20 public immutable SUSHI;
    /// @notice The index of MCV2 master pool in MCV1.
    uint256 public immutable MASTER_PID;
    // @notice The migrator contract. It has a lot of power. Can only be set through governance (owner).
    IMigratorChef public migrator;

    /// @notice Info of each MCV2 pool.
    PoolInfo[] public poolInfo;
    /// @notice Address of the LP token for each MCV2 pool.
    IERC20[] public lpToken;
    /// @notice Address of each `IRewarder` contract in MCV2.
    IRewarder[] public rewarder;

    /// @notice Info of each user that stakes LP tokens.
    mapping (uint256 => mapping (address => UserInfo)) public userInfo;
    /// @dev Total allocation points. Must be the sum of all allocation points in all pools.
    uint256 public totalAllocPoint;

    uint256 public constant MASTERCHEF_SUSHI_PER_BLOCK = 1e20;
    uint256 public constant ACC_SUSHI_PRECISION = 1e12;

    event Deposit(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
    event Withdraw(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
    event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
    event Harvest(address indexed user, uint256 indexed pid, uint256 amount);
    event LogPoolAddition(uint256 indexed pid, uint256 allocPoint, IERC20 indexed lpToken, IRewarder indexed rewarder);
    event LogSetPool(uint256 indexed pid, uint256 allocPoint, IRewarder indexed rewarder, bool overwrite);
    event LogUpdatePool(uint256 indexed pid, uint64 lastRewardBlock, uint256 lpSupply, uint256 accSushiPerShare);
    event LogInit();

    /// @param _MASTER_CHEF The SushiSwap MCV1 contract address.
    /// @param _sushi The SUSHI token contract address.
    /// @param _MASTER_PID The pool ID of the dummy token on the base MCV1 contract.
    constructor(IMasterChef _MASTER_CHEF, IERC20 _sushi, uint256 _MASTER_PID) public {
        MASTER_CHEF = _MASTER_CHEF;
        SUSHI = _sushi;
        MASTER_PID = _MASTER_PID;
    }

    /// @notice Deposits a dummy token to `MASTER_CHEF` MCV1. This is required because MCV1 holds the minting rights for SUSHI.
    /// Any balance of transaction sender in `dummyToken` is transferred.
    /// The allocation point for the pool on MCV1 is the total allocation point for all pools that receive double incentives.
    /// @param dummyToken The address of the ERC-20 token to deposit into MCV1.
    function init(IERC20 dummyToken) external {
        uint256 balance = dummyToken.balanceOf(msg.sender);
        require(balance != 0, "MasterChefV2: Balance must exceed 0");
        dummyToken.safeTransferFrom(msg.sender, address(this), balance);
        dummyToken.approve(address(MASTER_CHEF), balance);
        MASTER_CHEF.deposit(MASTER_PID, balance);
        emit LogInit();
    }

    /// @notice Returns the number of MCV2 pools.
    function poolLength() public view returns (uint256 pools) {
        pools = poolInfo.length;
    }

    /// @notice Add a new LP to the pool. Can only be called by the owner.
    /// DO NOT add the same LP token more than once. Rewards will be messed up if you do.
    /// @param allocPoint AP of the new pool.
    /// @param _lpToken Address of the LP ERC-20 token.
    /// @param _rewarder Address of the rewarder delegate.
    function add(uint256 allocPoint, IERC20 _lpToken, IRewarder _rewarder) public onlyOwner {
        uint256 lastRewardBlock = block.number;
        totalAllocPoint = totalAllocPoint.add(allocPoint);
        lpToken.push(_lpToken);
        rewarder.push(_rewarder);

        poolInfo.push(PoolInfo({
            allocPoint: allocPoint.to64(),
            lastRewardBlock: lastRewardBlock.to64(),
            accSushiPerShare: 0
        }));
        emit LogPoolAddition(lpToken.length.sub(1), allocPoint, _lpToken, _rewarder);
    }

    /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner.
    /// @param _pid The index of the pool. See `poolInfo`.
    /// @param _allocPoint New AP of the pool.
    /// @param _rewarder Address of the rewarder delegate.
    /// @param overwrite True if _rewarder should be `set`. Otherwise `_rewarder` is ignored.
    function set(uint256 _pid, uint256 _allocPoint, IRewarder _rewarder, bool overwrite) public onlyOwner {
        totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
        poolInfo[_pid].allocPoint = _allocPoint.to64();
        if (overwrite) { rewarder[_pid] = _rewarder; }
        emit LogSetPool(_pid, _allocPoint, overwrite ? _rewarder : rewarder[_pid], overwrite);
    }

    /// @notice Set the `migrator` contract. Can only be called by the owner.
    /// @param _migrator The contract address to set.
    function setMigrator(IMigratorChef _migrator) public onlyOwner {
        migrator = _migrator;
    }

    /// @notice Migrate LP token to another LP contract through the `migrator` contract.
    /// @param _pid The index of the pool. See `poolInfo`.
    function migrate(uint256 _pid) public {
        require(address(migrator) != address(0), "MasterChefV2: no migrator set");
        IERC20 _lpToken = lpToken[_pid];
        uint256 bal = _lpToken.balanceOf(address(this));
        _lpToken.approve(address(migrator), bal);
        IERC20 newLpToken = migrator.migrate(_lpToken);
        require(bal == newLpToken.balanceOf(address(this)), "MasterChefV2: migrated balance must match");
        lpToken[_pid] = newLpToken;
    }

    /// @notice View function to see pending SUSHI on frontend.
    /// @param _pid The index of the pool. See `poolInfo`.
    /// @param _user Address of user.
    /// @return pending SUSHI reward for a given user.
    function pendingSushi(uint256 _pid, address _user) external view returns (uint256 pending) {
        PoolInfo memory pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][_user];
        uint256 accSushiPerShare = pool.accSushiPerShare;
        uint256 lpSupply = lpToken[_pid].balanceOf(address(this));
        if (block.number > pool.lastRewardBlock && lpSupply != 0) {
            uint256 blocks = block.number.sub(pool.lastRewardBlock);
            uint256 sushiReward = blocks.mul(sushiPerBlock()).mul(pool.allocPoint) / totalAllocPoint;
            accSushiPerShare = accSushiPerShare.add(sushiReward.mul(ACC_SUSHI_PRECISION) / lpSupply);
        }
        pending = int256(user.amount.mul(accSushiPerShare) / ACC_SUSHI_PRECISION).sub(user.rewardDebt).toUInt256();
    }

    /// @notice Update reward variables for all pools. Be careful of gas spending!
    /// @param pids Pool IDs of all to be updated. Make sure to update all active pools.
    function massUpdatePools(uint256[] calldata pids) external {
        uint256 len = pids.length;
        for (uint256 i = 0; i < len; ++i) {
            updatePool(pids[i]);
        }
    }

    /// @notice Calculates and returns the `amount` of SUSHI per block.
    function sushiPerBlock() public view returns (uint256 amount) {
        amount = uint256(MASTERCHEF_SUSHI_PER_BLOCK)
            .mul(MASTER_CHEF.poolInfo(MASTER_PID).allocPoint) / MASTER_CHEF.totalAllocPoint();
    }

    /// @notice Update reward variables of the given pool.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @return pool Returns the pool that was updated.
    function updatePool(uint256 pid) public returns (PoolInfo memory pool) {
        pool = poolInfo[pid];
        if (block.number > pool.lastRewardBlock) {
            uint256 lpSupply = lpToken[pid].balanceOf(address(this));
            if (lpSupply > 0) {
                uint256 blocks = block.number.sub(pool.lastRewardBlock);
                uint256 sushiReward = blocks.mul(sushiPerBlock()).mul(pool.allocPoint) / totalAllocPoint;
                pool.accSushiPerShare = pool.accSushiPerShare.add((sushiReward.mul(ACC_SUSHI_PRECISION) / lpSupply).to128());
            }
            pool.lastRewardBlock = block.number.to64();
            poolInfo[pid] = pool;
            emit LogUpdatePool(pid, pool.lastRewardBlock, lpSupply, pool.accSushiPerShare);
        }
    }

    /// @notice Deposit LP tokens to MCV2 for SUSHI allocation.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param amount LP token amount to deposit.
    /// @param to The receiver of `amount` deposit benefit.
    function deposit(uint256 pid, uint256 amount, address to) public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][to];

        // Effects
        user.amount = user.amount.add(amount);
        user.rewardDebt = user.rewardDebt.add(int256(amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION));

        // Interactions
        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward(pid, to, to, 0, user.amount);
        }

        lpToken[pid].safeTransferFrom(msg.sender, address(this), amount);

        emit Deposit(msg.sender, pid, amount, to);
    }

    /// @notice Withdraw LP tokens from MCV2.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param amount LP token amount to withdraw.
    /// @param to Receiver of the LP tokens.
    function withdraw(uint256 pid, uint256 amount, address to) public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][msg.sender];

        // Effects
        user.rewardDebt = user.rewardDebt.sub(int256(amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION));
        user.amount = user.amount.sub(amount);

        // Interactions
        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward(pid, msg.sender, to, 0, user.amount);
        }
        
        lpToken[pid].safeTransfer(to, amount);

        emit Withdraw(msg.sender, pid, amount, to);
    }

    /// @notice Harvest proceeds for transaction sender to `to`.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param to Receiver of SUSHI rewards.
    function harvest(uint256 pid, address to) public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][msg.sender];
        int256 accumulatedSushi = int256(user.amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION);
        uint256 _pendingSushi = accumulatedSushi.sub(user.rewardDebt).toUInt256();

        // Effects
        user.rewardDebt = accumulatedSushi;

        // Interactions
        if (_pendingSushi != 0) {
            SUSHI.safeTransfer(to, _pendingSushi);
        }
        
        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward( pid, msg.sender, to, _pendingSushi, user.amount);
        }

        emit Harvest(msg.sender, pid, _pendingSushi);
    }
    
    /// @notice Withdraw LP tokens from MCV2 and harvest proceeds for transaction sender to `to`.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param amount LP token amount to withdraw.
    /// @param to Receiver of the LP tokens and SUSHI rewards.
    function withdrawAndHarvest(uint256 pid, uint256 amount, address to) public {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][msg.sender];
        int256 accumulatedSushi = int256(user.amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION);
        uint256 _pendingSushi = accumulatedSushi.sub(user.rewardDebt).toUInt256();

        // Effects
        user.rewardDebt = accumulatedSushi.sub(int256(amount.mul(pool.accSushiPerShare) / ACC_SUSHI_PRECISION));
        user.amount = user.amount.sub(amount);
        
        // Interactions
        SUSHI.safeTransfer(to, _pendingSushi);

        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward(pid, msg.sender, to, _pendingSushi, user.amount);
        }

        lpToken[pid].safeTransfer(to, amount);

        emit Withdraw(msg.sender, pid, amount, to);
        emit Harvest(msg.sender, pid, _pendingSushi);
    }

    /// @notice Harvests SUSHI from `MASTER_CHEF` MCV1 and pool `MASTER_PID` to this MCV2 contract.
    function harvestFromMasterChef() public {
        MASTER_CHEF.deposit(MASTER_PID, 0);
    }

    /// @notice Withdraw without caring about rewards. EMERGENCY ONLY.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @param to Receiver of the LP tokens.
    function emergencyWithdraw(uint256 pid, address to) public {
        UserInfo storage user = userInfo[pid][msg.sender];
        uint256 amount = user.amount;
        user.amount = 0;
        user.rewardDebt = 0;

        IRewarder _rewarder = rewarder[pid];
        if (address(_rewarder) != address(0)) {
            _rewarder.onSushiReward(pid, msg.sender, to, 0, 0);
        }

        // Note: transfer can fail or succeed if `amount` is zero.
        lpToken[pid].safeTransfer(to, amount);
        emit EmergencyWithdraw(msg.sender, pid, amount, to);
    }
}


// File contracts/mocks/ComplexRewarderTime.sol

pragma solidity 0.6.12;
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";

/// @author @0xKeno
contract Rewarder is IRewarder,  BoringOwnable, ReentrancyGuard{
    using BoringMath for uint256;
    using BoringMath128 for uint128;
    using BoringERC20 for IERC20;

    IERC20 public rewardToken;

    /// @notice Info of each MCV2 user.
    /// `amount` LP token amount the user has provided.
    /// `rewardDebt` The amount of SUSHI entitled to the user.
    struct UserInfo {
        uint256 amount;
        uint256 rewardDebt;
    }

    /// @notice Info of each MCV2 pool.
    /// `allocPoint` The amount of allocation points assigned to the pool.
    /// Also known as the amount of SUSHI to distribute per block.
    struct PoolInfo {
        uint128 accSushiPerShare;
        uint64 lastRewardTime;
        uint64 allocPoint;
    }

    /// @notice Info of each pool.
    mapping (uint256 => PoolInfo) public poolInfo;

    uint256[] public poolIds;

    /// @notice Info of each user that stakes LP tokens.
    mapping (uint256 => mapping (address => UserInfo)) public userInfo;
    /// @dev Total allocation points. Must be the sum of all allocation points in all pools.
    uint256 public totalAllocPoint;

    uint256 public rewardPerSecond;
    uint256 public constant ACC_TOKEN_PRECISION = 1e12;

    address public immutable MASTERCHEF_V2;

    modifier onlyMCV2 {
        require(
            msg.sender == MASTERCHEF_V2,
            "Only MCV2 can call this function."
        );
        _;
    }

		address public funder;

    modifier onlyFunder() {
        require(msg.sender == funder, "Ownable: caller is not the funder");
        _;
    }

    event LogOnReward(address indexed user, uint256 indexed pid, uint256 amount, address indexed to);
    event LogPoolAddition(uint256 indexed pid, uint256 allocPoint);
    event LogSetPool(uint256 indexed pid, uint256 allocPoint);
    event LogUpdatePool(uint256 indexed pid, uint64 lastRewardTime, uint256 lpSupply, uint256 accSushiPerShare);
    event LogRewardPerSecond(uint256 rewardPerSecond);
    event LogInit();

    constructor (IERC20 _rewardToken, uint256 _rewardPerSecond, address _MASTERCHEF_V2) public {
        rewardToken = _rewardToken;
        rewardPerSecond = _rewardPerSecond;
        MASTERCHEF_V2 = _MASTERCHEF_V2;
				funder = msg.sender;
     
    }

    function onSushiReward (uint256 pid, address _user, address to, uint256, uint256 lpToken) onlyMCV2 nonReentrant override external {
        PoolInfo memory pool = updatePool(pid);
        UserInfo storage user = userInfo[pid][_user];
        uint256 pending;
        if (user.amount > 0) {
            pending =
                (user.amount.mul(pool.accSushiPerShare) / ACC_TOKEN_PRECISION).sub(
                    user.rewardDebt
                );
            rewardToken.safeTransfer(to, pending);
        }
        user.amount = lpToken;
        user.rewardDebt = lpToken.mul(pool.accSushiPerShare) / ACC_TOKEN_PRECISION;
        emit LogOnReward(_user, pid, pending, to);
    }
    
    function pendingTokens(uint256 pid, address user, uint256) override external view returns (IERC20[] memory rewardTokens, uint256[] memory rewardAmounts) {
        IERC20[] memory _rewardTokens = new IERC20[](1);
        _rewardTokens[0] = (rewardToken);
        uint256[] memory _rewardAmounts = new uint256[](1);
        _rewardAmounts[0] = pendingToken(pid, user);
        return (_rewardTokens, _rewardAmounts);
    }

    /// @notice Sets the sushi per second to be distributed. Can only be called by the owner.
    /// @param _rewardPerSecond The amount of Sushi to be distributed per second.
    function setRewardPerSecond(uint256 _rewardPerSecond) public onlyOwner {
        rewardPerSecond = _rewardPerSecond;
        emit LogRewardPerSecond(_rewardPerSecond);
    }

    /// @notice Returns the number of MCV2 pools.
    function poolLength() public view returns (uint256 pools) {
        pools = poolIds.length;
    }

    /// @notice Add a new LP to the pool. Can only be called by the owner.
    /// DO NOT add the same LP token more than once. Rewards will be messed up if you do.
    /// @param allocPoint AP of the new pool.
    /// @param _pid Pid on MCV2
    function add(uint256 allocPoint, uint256 _pid) public onlyOwner {
        require(poolInfo[_pid].lastRewardTime == 0, "Pool already exists");
        uint256 lastRewardTime = block.timestamp;
        totalAllocPoint = totalAllocPoint.add(allocPoint);

        poolInfo[_pid] = PoolInfo({
            allocPoint: allocPoint.to64(),
            lastRewardTime: lastRewardTime.to64(),
            accSushiPerShare: 0
        });
        poolIds.push(_pid);
        emit LogPoolAddition(_pid, allocPoint);
    }

    /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner.
    /// @param _pid The index of the pool. See `poolInfo`.
    /// @param _allocPoint New AP of the pool.
    function set(uint256 _pid, uint256 _allocPoint) public onlyOwner {
        totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
        poolInfo[_pid].allocPoint = _allocPoint.to64();
        emit LogSetPool(_pid, _allocPoint);
    }

    /// @notice View function to see pending Token
    /// @param _pid The index of the pool. See `poolInfo`.
    /// @param _user Address of user.
    /// @return pending SUSHI reward for a given user.
    function pendingToken(uint256 _pid, address _user) public view returns (uint256 pending) {
        PoolInfo memory pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][_user];
        uint256 accSushiPerShare = pool.accSushiPerShare;
        uint256 lpSupply = MasterChefV2(MASTERCHEF_V2).lpToken(_pid).balanceOf(MASTERCHEF_V2);
        if (block.timestamp > pool.lastRewardTime && lpSupply != 0) {
            uint256 time = block.timestamp.sub(pool.lastRewardTime);
            uint256 sushiReward = time.mul(rewardPerSecond).mul(pool.allocPoint) / totalAllocPoint;
            accSushiPerShare = accSushiPerShare.add(sushiReward.mul(ACC_TOKEN_PRECISION) / lpSupply);
        }
        pending = (user.amount.mul(accSushiPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt);
    }

    /// @notice Update reward variables for all pools. Be careful of gas spending!
    /// @param pids Pool IDs of all to be updated. Make sure to update all active pools.
    function massUpdatePools(uint256[] calldata pids) external {
        uint256 len = pids.length;
        for (uint256 i = 0; i < len; ++i) {
            updatePool(pids[i]);
        }
    }

    /// @notice Update reward variables of the given pool.
    /// @param pid The index of the pool. See `poolInfo`.
    /// @return pool Returns the pool that was updated.
    function updatePool(uint256 pid) public returns (PoolInfo memory pool) {
        pool = poolInfo[pid];
        if (block.timestamp > pool.lastRewardTime) {
            uint256 lpSupply = MasterChefV2(MASTERCHEF_V2).lpToken(pid).balanceOf(MASTERCHEF_V2);

            if (lpSupply > 0) {
                uint256 time = block.timestamp.sub(pool.lastRewardTime);
                uint256 sushiReward = time.mul(rewardPerSecond).mul(pool.allocPoint) / totalAllocPoint;
                pool.accSushiPerShare = pool.accSushiPerShare.add((sushiReward.mul(ACC_TOKEN_PRECISION) / lpSupply).to128());
            }
            pool.lastRewardTime = block.timestamp.to64();
            poolInfo[pid] = pool;
            emit LogUpdatePool(pid, pool.lastRewardTime, lpSupply, pool.accSushiPerShare);
        }
    }

    function transferFunder(address newFunder) public onlyFunder {
        funder = newFunder;
    }

    function reclaimTokens(uint256 amount, address payable to) public onlyFunder {
			rewardToken.safeTransfer(to, amount);
    }

}

Please enter a contract address above to load the contract details and source code.

Context size (optional):