ETH Price: $3,913.58 (-0.52%)

Contract Diff Checker

Contract Name:
AuraOFT

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        require(!paused(), "Pausable: paused");
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        require(paused(), "Pausable: not paused");
        _;
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);

        uint256 currentAllowance = _allowances[sender][_msgSender()];
        require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
        unchecked {
            _approve(sender, _msgSender(), currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        uint256 currentAllowance = _allowances[_msgSender()][spender];
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(_msgSender(), spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        uint256 senderBalance = _balances[sender];
        require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[sender] = senderBalance - amount;
        }
        _balances[recipient] += amount;

        emit Transfer(sender, recipient, amount);

        _afterTokenTransfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

import "./ILayerZeroUserApplicationConfig.sol";

interface ILayerZeroEndpoint is ILayerZeroUserApplicationConfig {
    // @notice send a LayerZero message to the specified address at a LayerZero endpoint.
    // @param _dstChainId - the destination chain identifier
    // @param _destination - the address on destination chain (in bytes). address length/format may vary by chains
    // @param _payload - a custom bytes payload to send to the destination contract
    // @param _refundAddress - if the source transaction is cheaper than the amount of value passed,
    //                         refund the additional amount to this address
    // @param _zroPaymentAddress - the address of the ZRO token holder who would pay for the transaction
    // @param _adapterParams - parameters for custom functionality. e.g. receive airdropped native gas from the
    //                         relayer on destination
    function send(
        uint16 _dstChainId,
        bytes calldata _destination,
        bytes calldata _payload,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes calldata _adapterParams
    ) external payable;

    // @notice used by the messaging library to publish verified payload
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source contract (as bytes) at the source chain
    // @param _dstAddress - the address on destination chain
    // @param _nonce - the unbound message ordering nonce
    // @param _gasLimit - the gas limit for external contract execution
    // @param _payload - verified payload to send to the destination contract
    function receivePayload(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        address _dstAddress,
        uint64 _nonce,
        uint256 _gasLimit,
        bytes calldata _payload
    ) external;

    // @notice get the inboundNonce of a lzApp from a source chain which could be EVM or non-EVM chain
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source chain contract address
    function getInboundNonce(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (uint64);

    // @notice get the outboundNonce from this source chain which, consequently, is always an EVM
    // @param _srcAddress - the source chain contract address
    function getOutboundNonce(uint16 _dstChainId, address _srcAddress) external view returns (uint64);

    // @notice gets a quote in source native gas, for the amount that send() requires to pay for message delivery
    // @param _dstChainId - the destination chain identifier
    // @param _userApplication - the user app address on this EVM chain
    // @param _payload - the custom message to send over LayerZero
    // @param _payInZRO - if false, user app pays the protocol fee in native token
    // @param _adapterParam - parameters for the adapter service, e.g. send some dust native token to dstChain
    function estimateFees(
        uint16 _dstChainId,
        address _userApplication,
        bytes calldata _payload,
        bool _payInZRO,
        bytes calldata _adapterParam
    ) external view returns (uint256 nativeFee, uint256 zroFee);

    // @notice get this Endpoint's immutable source identifier
    function getChainId() external view returns (uint16);

    // @notice the interface to retry failed message on this Endpoint destination
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source chain contract address
    // @param _payload - the payload to be retried
    function retryPayload(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        bytes calldata _payload
    ) external;

    // @notice query if any STORED payload (message blocking) at the endpoint.
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source chain contract address
    function hasStoredPayload(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool);

    // @notice query if the _libraryAddress is valid for sending msgs.
    // @param _userApplication - the user app address on this EVM chain
    function getSendLibraryAddress(address _userApplication) external view returns (address);

    // @notice query if the _libraryAddress is valid for receiving msgs.
    // @param _userApplication - the user app address on this EVM chain
    function getReceiveLibraryAddress(address _userApplication) external view returns (address);

    // @notice query if the non-reentrancy guard for send() is on
    // @return true if the guard is on. false otherwise
    function isSendingPayload() external view returns (bool);

    // @notice query if the non-reentrancy guard for receive() is on
    // @return true if the guard is on. false otherwise
    function isReceivingPayload() external view returns (bool);

    // @notice get the configuration of the LayerZero messaging library of the specified version
    // @param _version - messaging library version
    // @param _chainId - the chainId for the pending config change
    // @param _userApplication - the contract address of the user application
    // @param _configType - type of configuration. every messaging library has its own convention.
    function getConfig(
        uint16 _version,
        uint16 _chainId,
        address _userApplication,
        uint256 _configType
    ) external view returns (bytes memory);

    // @notice get the send() LayerZero messaging library version
    // @param _userApplication - the contract address of the user application
    function getSendVersion(address _userApplication) external view returns (uint16);

    // @notice get the lzReceive() LayerZero messaging library version
    // @param _userApplication - the contract address of the user application
    function getReceiveVersion(address _userApplication) external view returns (uint16);
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

interface ILayerZeroReceiver {
    // @notice LayerZero endpoint will invoke this function to deliver the message on the destination
    // @param _srcChainId - the source endpoint identifier
    // @param _srcAddress - the source sending contract address from the source chain
    // @param _nonce - the ordered message nonce
    // @param _payload - the signed payload is the UA bytes has encoded to be sent
    function lzReceive(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        uint64 _nonce,
        bytes calldata _payload
    ) external;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

interface ILayerZeroUserApplicationConfig {
    // @notice set the configuration of the LayerZero messaging library of the specified version
    // @param _version - messaging library version
    // @param _chainId - the chainId for the pending config change
    // @param _configType - type of configuration. every messaging library has its own convention.
    // @param _config - configuration in the bytes. can encode arbitrary content.
    function setConfig(
        uint16 _version,
        uint16 _chainId,
        uint256 _configType,
        bytes calldata _config
    ) external;

    // @notice set the send() LayerZero messaging library version to _version
    // @param _version - new messaging library version
    function setSendVersion(uint16 _version) external;

    // @notice set the lzReceive() LayerZero messaging library version to _version
    // @param _version - new messaging library version
    function setReceiveVersion(uint16 _version) external;

    // @notice Only when the UA needs to resume the message flow in blocking mode and clear the stored payload
    // @param _srcChainId - the chainId of the source chain
    // @param _srcAddress - the contract address of the source contract at the source chain
    function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

import "@openzeppelin/contracts-0.8/access/Ownable.sol";
import "../interfaces/ILayerZeroReceiver.sol";
import "../interfaces/ILayerZeroUserApplicationConfig.sol";
import "../interfaces/ILayerZeroEndpoint.sol";
import "../util/BytesLib.sol";

/*
 * a generic LzReceiver implementation
 */
abstract contract LzApp is Ownable, ILayerZeroReceiver, ILayerZeroUserApplicationConfig {
    using BytesLib for bytes;

    // ua can not send payload larger than this by default, but it can be changed by the ua owner
    uint256 public constant DEFAULT_PAYLOAD_SIZE_LIMIT = 10000;

    ILayerZeroEndpoint public lzEndpoint;
    mapping(uint16 => bytes) public trustedRemoteLookup;
    mapping(uint16 => mapping(uint16 => uint256)) public minDstGasLookup;
    mapping(uint16 => uint256) public payloadSizeLimitLookup;
    address public precrime;

    event SetPrecrime(address precrime);
    event SetTrustedRemote(uint16 _remoteChainId, bytes _path);
    event SetTrustedRemoteAddress(uint16 _remoteChainId, bytes _remoteAddress);
    event SetMinDstGas(uint16 _dstChainId, uint16 _type, uint256 _minDstGas);

    function _initializeLzApp(address _endpoint) internal {
        require(address(lzEndpoint) == address(0), "already initialized");
        require(_endpoint != address(0), "endpoint=0");
        lzEndpoint = ILayerZeroEndpoint(_endpoint);
    }

    function lzReceive(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        uint64 _nonce,
        bytes calldata _payload
    ) public virtual override {
        // lzReceive must be called by the endpoint for security
        require(_msgSender() == address(lzEndpoint), "LzApp: invalid endpoint caller");

        bytes memory trustedRemote = trustedRemoteLookup[_srcChainId];
        // if will still block the message pathway from (srcChainId, srcAddress).
        // should not receive message from untrusted remote.
        require(
            _srcAddress.length == trustedRemote.length &&
                trustedRemote.length > 0 &&
                keccak256(_srcAddress) == keccak256(trustedRemote),
            "LzApp: invalid source sending contract"
        );

        _blockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
    }

    // abstract function - the default behaviour of LayerZero is blocking.
    // See: NonblockingLzApp if you dont need to enforce ordered messaging
    function _blockingLzReceive(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64 _nonce,
        bytes memory _payload
    ) internal virtual;

    function _lzSend(
        uint16 _dstChainId,
        bytes memory _payload,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes memory _adapterParams,
        uint256 _nativeFee
    ) internal virtual {
        bytes memory trustedRemote = trustedRemoteLookup[_dstChainId];
        require(trustedRemote.length != 0, "LzApp: destination chain is not a trusted source");
        _checkPayloadSize(_dstChainId, _payload.length);
        lzEndpoint.send{ value: _nativeFee }(
            _dstChainId,
            trustedRemote,
            _payload,
            _refundAddress,
            _zroPaymentAddress,
            _adapterParams
        );
    }

    function _checkGasLimit(
        uint16 _dstChainId,
        uint16 _type,
        bytes memory _adapterParams,
        uint256 _extraGas
    ) internal view virtual {
        uint256 providedGasLimit = _getGasLimit(_adapterParams);
        uint256 minGasLimit = minDstGasLookup[_dstChainId][_type] + _extraGas;
        require(minGasLimit > 0, "LzApp: minGasLimit not set");
        require(providedGasLimit >= minGasLimit, "LzApp: gas limit is too low");
    }

    function _getGasLimit(bytes memory _adapterParams) internal pure virtual returns (uint256 gasLimit) {
        require(_adapterParams.length >= 34, "LzApp: invalid adapterParams");
        assembly {
            gasLimit := mload(add(_adapterParams, 34))
        }
    }

    function _checkPayloadSize(uint16 _dstChainId, uint256 _payloadSize) internal view virtual {
        uint256 payloadSizeLimit = payloadSizeLimitLookup[_dstChainId];
        if (payloadSizeLimit == 0) {
            // use default if not set
            payloadSizeLimit = DEFAULT_PAYLOAD_SIZE_LIMIT;
        }
        require(_payloadSize <= payloadSizeLimit, "LzApp: payload size is too large");
    }

    //---------------------------UserApplication config----------------------------------------
    function getConfig(
        uint16 _version,
        uint16 _chainId,
        address,
        uint256 _configType
    ) external view returns (bytes memory) {
        return lzEndpoint.getConfig(_version, _chainId, address(this), _configType);
    }

    // generic config for LayerZero user Application
    function setConfig(
        uint16 _version,
        uint16 _chainId,
        uint256 _configType,
        bytes calldata _config
    ) external override onlyOwner {
        lzEndpoint.setConfig(_version, _chainId, _configType, _config);
    }

    function setSendVersion(uint16 _version) external override onlyOwner {
        lzEndpoint.setSendVersion(_version);
    }

    function setReceiveVersion(uint16 _version) external override onlyOwner {
        lzEndpoint.setReceiveVersion(_version);
    }

    function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external override onlyOwner {
        lzEndpoint.forceResumeReceive(_srcChainId, _srcAddress);
    }

    // _path = abi.encodePacked(remoteAddress, localAddress)
    // this function set the trusted path for the cross-chain communication
    function setTrustedRemote(uint16 _srcChainId, bytes calldata _path) external onlyOwner {
        trustedRemoteLookup[_srcChainId] = _path;
        emit SetTrustedRemote(_srcChainId, _path);
    }

    function setTrustedRemoteAddress(uint16 _remoteChainId, bytes calldata _remoteAddress) external onlyOwner {
        trustedRemoteLookup[_remoteChainId] = abi.encodePacked(_remoteAddress, address(this));
        emit SetTrustedRemoteAddress(_remoteChainId, _remoteAddress);
    }

    function getTrustedRemoteAddress(uint16 _remoteChainId) external view returns (bytes memory) {
        bytes memory path = trustedRemoteLookup[_remoteChainId];
        require(path.length != 0, "LzApp: no trusted path record");
        return path.slice(0, path.length - 20); // the last 20 bytes should be address(this)
    }

    function setPrecrime(address _precrime) external onlyOwner {
        precrime = _precrime;
        emit SetPrecrime(_precrime);
    }

    function setMinDstGas(
        uint16 _dstChainId,
        uint16 _packetType,
        uint256 _minGas
    ) external onlyOwner {
        require(_minGas > 0, "LzApp: invalid minGas");
        minDstGasLookup[_dstChainId][_packetType] = _minGas;
        emit SetMinDstGas(_dstChainId, _packetType, _minGas);
    }

    // if the size is 0, it means default size limit
    function setPayloadSizeLimit(uint16 _dstChainId, uint256 _size) external onlyOwner {
        payloadSizeLimitLookup[_dstChainId] = _size;
    }

    //--------------------------- VIEW FUNCTION ----------------------------------------
    function isTrustedRemote(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool) {
        bytes memory trustedSource = trustedRemoteLookup[_srcChainId];
        return keccak256(trustedSource) == keccak256(_srcAddress);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

import "./LzApp.sol";
import "../util/ExcessivelySafeCall.sol";

/*
 * the default LayerZero messaging behaviour is blocking, i.e. any failed message will block the channel
 * this abstract class try-catch all fail messages and store locally for future retry. hence, non-blocking
 * NOTE: if the srcAddress is not configured properly,
 * it will still block the message pathway from (srcChainId, srcAddress)
 */
abstract contract NonblockingLzApp is LzApp {
    using ExcessivelySafeCall for address;

    mapping(uint16 => mapping(bytes => mapping(uint64 => bytes32))) public failedMessages;

    event MessageFailed(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes _payload, bytes _reason);
    event RetryMessageSuccess(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes32 _payloadHash);

    // overriding the virtual function in LzReceiver
    function _blockingLzReceive(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64 _nonce,
        bytes memory _payload
    ) internal virtual override {
        (bool success, bytes memory reason) = address(this).excessivelySafeCall(
            gasleft(),
            150,
            abi.encodeWithSelector(this.nonblockingLzReceive.selector, _srcChainId, _srcAddress, _nonce, _payload)
        );
        // try-catch all errors/exceptions
        if (!success) {
            _storeFailedMessage(_srcChainId, _srcAddress, _nonce, _payload, reason);
        }
    }

    function _storeFailedMessage(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64 _nonce,
        bytes memory _payload,
        bytes memory _reason
    ) internal virtual {
        failedMessages[_srcChainId][_srcAddress][_nonce] = keccak256(_payload);
        emit MessageFailed(_srcChainId, _srcAddress, _nonce, _payload, _reason);
    }

    function nonblockingLzReceive(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        uint64 _nonce,
        bytes calldata _payload
    ) public virtual {
        // only internal transaction
        require(_msgSender() == address(this), "NonblockingLzApp: caller must be LzApp");
        _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
    }

    //@notice override this function
    function _nonblockingLzReceive(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64 _nonce,
        bytes memory _payload
    ) internal virtual;

    function retryMessage(
        uint16 _srcChainId,
        bytes calldata _srcAddress,
        uint64 _nonce,
        bytes calldata _payload
    ) public payable virtual {
        // assert there is message to retry
        bytes32 payloadHash = failedMessages[_srcChainId][_srcAddress][_nonce];
        require(payloadHash != bytes32(0), "NonblockingLzApp: no stored message");
        require(keccak256(_payload) == payloadHash, "NonblockingLzApp: invalid payload");
        // clear the stored message
        failedMessages[_srcChainId][_srcAddress][_nonce] = bytes32(0);
        // execute the message. revert if it fails again
        _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
        emit RetryMessageSuccess(_srcChainId, _srcAddress, _nonce, payloadHash);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

import "./IOFTCore.sol";
import "@openzeppelin/contracts-0.8/token/ERC20/IERC20.sol";

/**
 * @dev Interface of the OFT standard
 */
interface IOFT is IOFTCore, IERC20 {

}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

import "@openzeppelin/contracts-0.8/utils/introspection/IERC165.sol";

/**
 * @dev Interface of the IOFT core standard
 */
interface IOFTCore is IERC165 {
    /**
     * @dev estimate send token `_tokenId` to (`_dstChainId`, `_toAddress`)
     * _dstChainId - L0 defined chain id to send tokens too
     * _toAddress - dynamic bytes array which contains the address to whom you are sending tokens to on the dstChain
     * _amount - amount of the tokens to transfer
     * _useZro - indicates to use zro to pay L0 fees
     * _adapterParam - flexible bytes array to indicate messaging adapter services in L0
     */
    function estimateSendFee(
        uint16 _dstChainId,
        bytes calldata _toAddress,
        uint256 _amount,
        bool _useZro,
        bytes calldata _adapterParams
    ) external view returns (uint256 nativeFee, uint256 zroFee);

    /**
     * @dev send `_amount` amount of token to (`_dstChainId`, `_toAddress`) from `_from`
     * `_from` the owner of token
     * `_dstChainId` the destination chain identifier
     * `_toAddress` can be any size depending on the `dstChainId`.
     * `_amount` the quantity of tokens in wei
     * `_refundAddress` the address LayerZero refunds if too much message fee is sent
     * `_zroPaymentAddress` set to address(0x0) if not paying in ZRO (LayerZero Token)
     * `_adapterParams` is a flexible bytes array to indicate messaging adapter services
     */
    function sendFrom(
        address _from,
        uint16 _dstChainId,
        bytes calldata _toAddress,
        uint256 _amount,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes calldata _adapterParams
    ) external payable;

    /**
     * @dev returns the circulating amount of tokens on current chain
     */
    function circulatingSupply() external view returns (uint256);

    /**
     * @dev returns the address of the ERC20 token
     */
    function token() external view returns (address);

    /**
     * @dev Emitted when `_amount` tokens are moved from the `_sender` to (`_dstChainId`, `_toAddress`)
     * `_nonce` is the outbound nonce
     */
    event SendToChain(uint16 indexed _dstChainId, address indexed _from, bytes _toAddress, uint256 _amount);

    /**
     * @dev Emitted when `_amount` tokens are received from `_srcChainId` into the `_toAddress` on the local chain.
     * `_nonce` is the inbound nonce.
     */
    event ReceiveFromChain(uint16 indexed _srcChainId, address indexed _to, uint256 _amount);

    event SetUseCustomAdapterParams(bool _useCustomAdapterParams);
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

import "@openzeppelin/contracts-0.8/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts-0.8/utils/introspection/IERC165.sol";
import "./IOFT.sol";
import "./OFTCore.sol";

// override decimal() function is needed
contract OFT is OFTCore, ERC20, IOFT {
    constructor(string memory _name, string memory _symbol) ERC20(_name, _symbol) {}

    function supportsInterface(bytes4 interfaceId) public view virtual override(OFTCore, IERC165) returns (bool) {
        return
            interfaceId == type(IOFT).interfaceId ||
            interfaceId == type(IERC20).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    function token() public view virtual override returns (address) {
        return address(this);
    }

    /**
     * @dev returns the circulating amount of tokens on current chain
     */
    function circulatingSupply() public view virtual override returns (uint256) {
        return totalSupply();
    }

    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    function _debitFrom(
        address _from,
        uint16,
        bytes memory,
        uint256 _amount
    ) internal virtual override returns (uint256) {
        address spender = _msgSender();
        if (_from != spender) _spendAllowance(_from, spender, _amount);
        _burn(_from, _amount);
        return _amount;
    }

    function _creditTo(
        uint16,
        address _toAddress,
        uint256 _amount
    ) internal virtual override returns (uint256) {
        _mint(_toAddress, _amount);
        return _amount;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

import "../../lzApp/NonblockingLzApp.sol";
import "./IOFTCore.sol";
import "@openzeppelin/contracts-0.8/utils/introspection/ERC165.sol";

abstract contract OFTCore is NonblockingLzApp, ERC165, IOFTCore {
    using BytesLib for bytes;

    uint256 public constant NO_EXTRA_GAS = 0;

    // packet type
    uint16 public constant PT_SEND = 0;

    bool public useCustomAdapterParams;

    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return interfaceId == type(IOFTCore).interfaceId || super.supportsInterface(interfaceId);
    }

    function estimateSendFee(
        uint16 _dstChainId,
        bytes calldata _toAddress,
        uint256 _amount,
        bool _useZro,
        bytes calldata _adapterParams
    ) public view virtual override returns (uint256 nativeFee, uint256 zroFee) {
        // mock the payload for sendFrom()
        bytes memory payload = abi.encode(PT_SEND, _toAddress, _amount);
        return lzEndpoint.estimateFees(_dstChainId, address(this), payload, _useZro, _adapterParams);
    }

    function sendFrom(
        address _from,
        uint16 _dstChainId,
        bytes calldata _toAddress,
        uint256 _amount,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes calldata _adapterParams
    ) public payable virtual override {
        _send(_from, _dstChainId, _toAddress, _amount, _refundAddress, _zroPaymentAddress, _adapterParams);
    }

    function setUseCustomAdapterParams(bool _useCustomAdapterParams) public virtual onlyOwner {
        useCustomAdapterParams = _useCustomAdapterParams;
        emit SetUseCustomAdapterParams(_useCustomAdapterParams);
    }

    function _nonblockingLzReceive(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64 _nonce,
        bytes memory _payload
    ) internal virtual override {
        uint16 packetType;
        assembly {
            packetType := mload(add(_payload, 32))
        }

        if (packetType == PT_SEND) {
            _sendAck(_srcChainId, _srcAddress, _nonce, _payload);
        } else {
            revert("OFTCore: unknown packet type");
        }
    }

    function _send(
        address _from,
        uint16 _dstChainId,
        bytes memory _toAddress,
        uint256 _amount,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes memory _adapterParams
    ) internal virtual {
        _checkAdapterParams(_dstChainId, PT_SEND, _adapterParams, NO_EXTRA_GAS);

        uint256 amount = _debitFrom(_from, _dstChainId, _toAddress, _amount);

        bytes memory lzPayload = abi.encode(PT_SEND, _toAddress, amount);
        _lzSend(_dstChainId, lzPayload, _refundAddress, _zroPaymentAddress, _adapterParams, msg.value);

        emit SendToChain(_dstChainId, _from, _toAddress, amount);
    }

    function _sendAck(
        uint16 _srcChainId,
        bytes memory,
        uint64,
        bytes memory _payload
    ) internal virtual {
        (, bytes memory toAddressBytes, uint256 amount) = abi.decode(_payload, (uint16, bytes, uint256));

        address to = toAddressBytes.toAddress(0);

        amount = _creditTo(_srcChainId, to, amount);
        emit ReceiveFromChain(_srcChainId, to, amount);
    }

    function _checkAdapterParams(
        uint16 _dstChainId,
        uint16 _pkType,
        bytes memory _adapterParams,
        uint256 _extraGas
    ) internal virtual {
        if (useCustomAdapterParams) {
            _checkGasLimit(_dstChainId, _pkType, _adapterParams, _extraGas);
        } else {
            require(_adapterParams.length == 0, "OFTCore: _adapterParams must be empty.");
        }
    }

    function _debitFrom(
        address _from,
        uint16 _dstChainId,
        bytes memory _toAddress,
        uint256 _amount
    ) internal virtual returns (uint256);

    function _creditTo(
        uint16 _srcChainId,
        address _toAddress,
        uint256 _amount
    ) internal virtual returns (uint256);
}

// SPDX-License-Identifier: Unlicense
/*
 * @title Solidity Bytes Arrays Utils
 * @author Gonçalo Sá <[email protected]>
 *
 * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
 *      The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
 */
pragma solidity 0.8.11;

library BytesLib {
    function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
        bytes memory tempBytes;

        assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
            tempBytes := mload(0x40)

            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
            let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
            let end := add(mc, length)

            for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                mstore(mc, mload(cc))
            }

            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
            mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(
                0x40,
                and(
                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                    not(31) // Round down to the nearest 32 bytes.
                )
            )
        }

        return tempBytes;
    }

    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
        assembly {
            // Read the first 32 bytes of _preBytes storage, which is the length
            // of the array. (We don't need to use the offset into the slot
            // because arrays use the entire slot.)
            let fslot := sload(_preBytes.slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)
            let newlength := add(slength, mlength)
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
            switch add(lt(slength, 32), lt(newlength, 32))
            case 2 {
                // Since the new array still fits in the slot, we just need to
                // update the contents of the slot.
                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                sstore(
                    _preBytes.slot,
                    // all the modifications to the slot are inside this
                    // next block
                    add(
                        // we can just add to the slot contents because the
                        // bytes we want to change are the LSBs
                        fslot,
                        add(
                            mul(
                                div(
                                    // load the bytes from memory
                                    mload(add(_postBytes, 0x20)),
                                    // zero all bytes to the right
                                    exp(0x100, sub(32, mlength))
                                ),
                                // and now shift left the number of bytes to
                                // leave space for the length in the slot
                                exp(0x100, sub(32, newlength))
                            ),
                            // increase length by the double of the memory
                            // bytes length
                            mul(mlength, 2)
                        )
                    )
                )
            }
            case 1 {
                // The stored value fits in the slot, but the combined value
                // will exceed it.
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // The contents of the _postBytes array start 32 bytes into
                // the structure. Our first read should obtain the `submod`
                // bytes that can fit into the unused space in the last word
                // of the stored array. To get this, we read 32 bytes starting
                // from `submod`, so the data we read overlaps with the array
                // contents by `submod` bytes. Masking the lowest-order
                // `submod` bytes allows us to add that value directly to the
                // stored value.

                let submod := sub(32, slength)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(
                    sc,
                    add(
                        and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                        and(mload(mc), mask)
                    )
                )

                for {
                    mc := add(mc, 0x20)
                    sc := add(sc, 1)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
            default {
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                // Start copying to the last used word of the stored array.
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // Copy over the first `submod` bytes of the new data as in
                // case 1 above.
                let slengthmod := mod(slength, 32)
                let mlengthmod := mod(mlength, 32)
                let submod := sub(32, slengthmod)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(sload(sc), and(mload(mc), mask)))

                for {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
        }
    }

    function slice(
        bytes memory _bytes,
        uint256 _start,
        uint256 _length
    ) internal pure returns (bytes memory) {
        require(_length + 31 >= _length, "slice_overflow");
        require(_bytes.length >= _start + _length, "slice_outOfBounds");

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)
                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
        require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
        address tempAddress;

        assembly {
            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
        }

        return tempAddress;
    }

    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
        require(_bytes.length >= _start + 1, "toUint8_outOfBounds");
        uint8 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x1), _start))
        }

        return tempUint;
    }

    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
        require(_bytes.length >= _start + 2, "toUint16_outOfBounds");
        uint16 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x2), _start))
        }

        return tempUint;
    }

    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
        require(_bytes.length >= _start + 4, "toUint32_outOfBounds");
        uint32 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x4), _start))
        }

        return tempUint;
    }

    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
        require(_bytes.length >= _start + 8, "toUint64_outOfBounds");
        uint64 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x8), _start))
        }

        return tempUint;
    }

    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
        require(_bytes.length >= _start + 12, "toUint96_outOfBounds");
        uint96 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0xc), _start))
        }

        return tempUint;
    }

    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
        require(_bytes.length >= _start + 16, "toUint128_outOfBounds");
        uint128 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x10), _start))
        }

        return tempUint;
    }

    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
        require(_bytes.length >= _start + 32, "toUint256_outOfBounds");
        uint256 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }

        return tempUint;
    }

    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
        require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");
        bytes32 tempBytes32;

        assembly {
            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
        }

        return tempBytes32;
    }

    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
        bool success = true;

        assembly {
            let length := mload(_preBytes)

            // if lengths don't match the arrays are not equal
            switch eq(length, mload(_postBytes))
            case 1 {
                // cb is a circuit breaker in the for loop since there's
                //  no said feature for inline assembly loops
                // cb = 1 - don't breaker
                // cb = 0 - break
                let cb := 1

                let mc := add(_preBytes, 0x20)
                let end := add(mc, length)

                for {
                    let cc := add(_postBytes, 0x20)
                    // the next line is the loop condition:
                    // while(uint256(mc < end) + cb == 2)
                } eq(add(lt(mc, end), cb), 2) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    // if any of these checks fails then arrays are not equal
                    if iszero(eq(mload(mc), mload(cc))) {
                        // unsuccess:
                        success := 0
                        cb := 0
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
        bool success = true;

        assembly {
            // we know _preBytes_offset is 0
            let fslot := sload(_preBytes.slot)
            // Decode the length of the stored array like in concatStorage().
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)

            // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
                // slength can contain both the length and contents of the array
                // if length < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                        // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                            success := 0
                        }
                    }
                    default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1

                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                        // the next line is the loop condition:
                        // while(uint256(mc < end) + cb == 2)
                        for {

                        } eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity 0.8.11;

library ExcessivelySafeCall {
    uint256 constant LOW_28_MASK = 0x00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff;

    /// @notice Use when you _really_ really _really_ don't trust the called
    /// contract. This prevents the called contract from causing reversion of
    /// the caller in as many ways as we can.
    /// @dev The main difference between this and a solidity low-level call is
    /// that we limit the number of bytes that the callee can cause to be
    /// copied to caller memory. This prevents stupid things like malicious
    /// contracts returning 10,000,000 bytes causing a local OOG when copying
    /// to memory.
    /// @param _target The address to call
    /// @param _gas The amount of gas to forward to the remote contract
    /// @param _maxCopy The maximum number of bytes of returndata to copy
    /// to memory.
    /// @param _calldata The data to send to the remote contract
    /// @return success and returndata, as `.call()`. Returndata is capped to
    /// `_maxCopy` bytes.
    function excessivelySafeCall(
        address _target,
        uint256 _gas,
        uint16 _maxCopy,
        bytes memory _calldata
    ) internal returns (bool, bytes memory) {
        // set up for assembly call
        uint256 _toCopy;
        bool _success;
        bytes memory _returnData = new bytes(_maxCopy);
        // dispatch message to recipient
        // by assembly calling "handle" function
        // we call via assembly to avoid memcopying a very large returndata
        // returned by a malicious contract
        assembly {
            _success := call(
                _gas, // gas
                _target, // recipient
                0, // ether value
                add(_calldata, 0x20), // inloc
                mload(_calldata), // inlen
                0, // outloc
                0 // outlen
            )
            // limit our copy to 256 bytes
            _toCopy := returndatasize()
            if gt(_toCopy, _maxCopy) {
                _toCopy := _maxCopy
            }
            // Store the length of the copied bytes
            mstore(_returnData, _toCopy)
            // copy the bytes from returndata[0:_toCopy]
            returndatacopy(add(_returnData, 0x20), 0, _toCopy)
        }
        return (_success, _returnData);
    }

    /// @notice Use when you _really_ really _really_ don't trust the called
    /// contract. This prevents the called contract from causing reversion of
    /// the caller in as many ways as we can.
    /// @dev The main difference between this and a solidity low-level call is
    /// that we limit the number of bytes that the callee can cause to be
    /// copied to caller memory. This prevents stupid things like malicious
    /// contracts returning 10,000,000 bytes causing a local OOG when copying
    /// to memory.
    /// @param _target The address to call
    /// @param _gas The amount of gas to forward to the remote contract
    /// @param _maxCopy The maximum number of bytes of returndata to copy
    /// to memory.
    /// @param _calldata The data to send to the remote contract
    /// @return success and returndata, as `.call()`. Returndata is capped to
    /// `_maxCopy` bytes.
    function excessivelySafeStaticCall(
        address _target,
        uint256 _gas,
        uint16 _maxCopy,
        bytes memory _calldata
    ) internal view returns (bool, bytes memory) {
        // set up for assembly call
        uint256 _toCopy;
        bool _success;
        bytes memory _returnData = new bytes(_maxCopy);
        // dispatch message to recipient
        // by assembly calling "handle" function
        // we call via assembly to avoid memcopying a very large returndata
        // returned by a malicious contract
        assembly {
            _success := staticcall(
                _gas, // gas
                _target, // recipient
                add(_calldata, 0x20), // inloc
                mload(_calldata), // inlen
                0, // outloc
                0 // outlen
            )
            // limit our copy to 256 bytes
            _toCopy := returndatasize()
            if gt(_toCopy, _maxCopy) {
                _toCopy := _maxCopy
            }
            // Store the length of the copied bytes
            mstore(_returnData, _toCopy)
            // copy the bytes from returndata[0:_toCopy]
            returndatacopy(add(_returnData, 0x20), 0, _toCopy)
        }
        return (_success, _returnData);
    }

    /**
     * @notice Swaps function selectors in encoded contract calls
     * @dev Allows reuse of encoded calldata for functions with identical
     * argument types but different names. It simply swaps out the first 4 bytes
     * for the new selector. This function modifies memory in place, and should
     * only be used with caution.
     * @param _newSelector The new 4-byte selector
     * @param _buf The encoded contract args
     */
    function swapSelector(bytes4 _newSelector, bytes memory _buf) internal pure {
        require(_buf.length >= 4);
        uint256 _mask = LOW_28_MASK;
        assembly {
            // load the first word of
            let _word := mload(add(_buf, 0x20))
            // mask out the top 4 bytes
            // /x
            _word := and(_word, _mask)
            _word := or(_newSelector, _word)
            mstore(add(_buf, 0x20), _word)
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;

import { ReentrancyGuard } from "@openzeppelin/contracts-0.8/security/ReentrancyGuard.sol";
import { PausableOFT } from "./PausableOFT.sol";
import { CrossChainConfig } from "./CrossChainConfig.sol";
import { CrossChainMessages as CCM } from "./CrossChainMessages.sol";

/**
 * @title   AuraOFT
 * @author  AuraFinance
 * @dev     Sidechain AURA
 */
contract AuraOFT is PausableOFT, CrossChainConfig, ReentrancyGuard {
    /* -------------------------------------------------------------------
       Storage 
    ------------------------------------------------------------------- */

    /// @dev canonical chain ID
    uint16 public immutable canonicalChainId;

    /* -------------------------------------------------------------------
       Events 
    ------------------------------------------------------------------- */

    /**
     * @dev Emitted when locked cvx on the L1 chain
     * @param caller The msg.sender
     * @param amount The amount of cvx locked.
     */
    event Locked(address indexed caller, uint256 amount);

    /* -------------------------------------------------------------------
       Constructor 
    ------------------------------------------------------------------- */
    /**
     * @dev Constructs the AuraOFT contract.
     * @param _name             The oft token name
     * @param _symbol           The oft token symbol
     * @param _canonicalChainId The canonical chain id
     */
    constructor(
        string memory _name,
        string memory _symbol,
        uint16 _canonicalChainId
    ) PausableOFT(_name, _symbol) {
        canonicalChainId = _canonicalChainId;
    }

    /**
     * Initialize the contract.
     * @param _lzEndpoint LayerZero endpoint contract
     * @param _guardian   The pause guardian
     */
    function initialize(address _lzEndpoint, address _guardian) external onlyOwner {
        _initializeLzApp(_lzEndpoint);
        _initializePauseGuardian(_guardian);
    }

    /* -------------------------------------------------------------------
       Setter Functions
    ------------------------------------------------------------------- */

    /**
     * @dev Sets the configuration for a given source chain ID and selector.
     * @param _srcChainId The source chain ID.
     * @param _selector The selector.
     * @param _adapterParams The adapter params.
     */
    function setAdapterParams(
        uint16 _srcChainId,
        bytes32 _selector,
        bytes memory _adapterParams
    ) external override onlyOwner {
        _setAdapterParams(_srcChainId, _selector, _adapterParams);
    }

    /* -------------------------------------------------------------------
       Core Functions
    ------------------------------------------------------------------- */

    /**
     * @dev Lock CVX on the L1 chain
     * @param _receiver address that will be receiving the refund and vlaura lock
     * @param _cvxAmount Amount of CVX to lock for vlCVX on L1
     * @param _zroPaymentAddress The LayerZero ZRO payment address
     */
    function lock(
        address _receiver,
        uint256 _cvxAmount,
        address _zroPaymentAddress
    ) external payable whenNotPaused nonReentrant {
        require(_cvxAmount > 0, "!amount");
        _debitFrom(msg.sender, canonicalChainId, bytes(""), _cvxAmount);

        bytes memory payload = CCM.encodeLock(_receiver, _cvxAmount);

        bytes memory adapterParams = getAdapterParams[canonicalChainId][keccak256("lock(address,uint256,address)")];

        _lzSend(
            canonicalChainId, ////////// Parent chain ID
            payload, /////////////////// Payload
            payable(_receiver), //////// Refund address
            _zroPaymentAddress, //////// ZRO payment address
            adapterParams, ///////////// Adapter params
            msg.value ////////////////// Native fee
        );

        emit Locked(_receiver, _cvxAmount);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;

/**
 * @title   Cross Chain Config
 * @author  AuraFinance
 * @dev     Setter/Getter logic for cross chain layer zero config
 */
abstract contract CrossChainConfig {
    /// @dev srcChainId mapped to selector and configuration
    mapping(uint16 => mapping(bytes32 => bytes)) public getAdapterParams;

    /* -------------------------------------------------------------------
       Events 
    ------------------------------------------------------------------- */

    /**
     * @dev Emitted a configuration is set for a given source chain id.
     * @param srcChainId    The source chain ID.
     * @param selector      The selector.
     * @param adapterParams The configuration.
     */
    event SetAdapterParams(uint16 indexed srcChainId, bytes32 selector, bytes adapterParams);

    /**
     * @dev Sets the configuration for a given source chain ID and selector.
     * @param _srcChainId The source chain ID.
     * @param _selector The selector.
     * @param _adapterParams The adapter params.
     */
    function setAdapterParams(
        uint16 _srcChainId,
        bytes32 _selector,
        bytes memory _adapterParams
    ) external virtual;

    function _setAdapterParams(
        uint16 _srcChainId,
        bytes32 _selector,
        bytes memory _adapterParams
    ) internal {
        getAdapterParams[_srcChainId][_selector] = _adapterParams;
        emit SetAdapterParams(_srcChainId, _selector, _adapterParams);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;

/**
 * @title   Cross Chain Messages
 * @author  AuraFinance
 * @dev     Share types for cross chain messages
 */
library CrossChainMessages {
    /// @dev Magic Bytes to pad the custom message with
    /// bytes4(keccak256("_isCustomMessage(bytes)"))
    bytes4 public constant MAGIC_BYTES = 0x7a7f9946;

    enum MessageType {
        // Lock L2 AURA as vlAURA
        LOCK,
        // sent from the L2 to trigger a feeDebt update
        FEES,
        // sent from the L1 to the L2 after a successful debt update
        // will trigger AURA to be sent to the L2 and the rate to get
        // updated on the L2
        FEES_CALLBACK
    }

    function getMessageType(bytes memory _payload) internal pure returns (MessageType) {
        bytes32 messageType;
        assembly {
            messageType := mload(add(add(_payload, 32), 32))
        }
        return MessageType(uint8(uint256(messageType)));
    }

    function isCustomMessage(bytes memory _payload) internal pure returns (bool) {
        bytes4 sig;
        assembly {
            sig := mload(add(_payload, 32))
        }
        return sig == MAGIC_BYTES;
    }

    /* -------------------------------------------------------------------
       Encode
    ------------------------------------------------------------------- */

    /**
     * @notice This function encodes the lock message for the sender and amount.
     * @dev The function encodes the lock message for the sender and amount using the ABI encoding.
     * The MAGIC_BYTES and MessageType.LOCK are used to encode the message.
     */
    function encodeLock(address sender, uint256 amount) internal pure returns (bytes memory) {
        return abi.encode(MAGIC_BYTES, MessageType.LOCK, sender, amount);
    }

    /**
     * @notice This function encodes fees for a given amount.
     * @dev The function takes a uint256 amount as an argument and returns a bytes memory.
     */
    function encodeFees(uint256 amount) internal pure returns (bytes memory) {
        return abi.encode(MAGIC_BYTES, MessageType.FEES, amount);
    }

    /**
     * @notice encodeFeesCallback() is a function that encodes the cvxAmount into a bytes memory.
     * @dev The function takes a uint256 parameter cvxAmount, and returns a bytes memory.
     */
    function encodeFeesCallback(uint256 cvxAmount) internal pure returns (bytes memory) {
        return abi.encode(MAGIC_BYTES, MessageType.FEES_CALLBACK, cvxAmount);
    }

    /* -------------------------------------------------------------------
       Decode 
    ------------------------------------------------------------------- */

    /**
     * @notice decodeFeesCallback decodes the payload and returns the cvxAmount
     * @dev decodeFeesCallback takes in a bytes memory _payload and returns an uint256 cvxAmount
     */
    function decodeFeesCallback(bytes memory _payload) internal pure returns (uint256) {
        (, , uint256 cvxAmount) = abi.decode(_payload, (bytes4, uint8, uint256));
        return (cvxAmount);
    }

    /**
     * @notice decodeFees() is a function that decodes the fees from a given payload.
     * @dev decodeFees() takes in a bytes memory _payload and returns a uint256 amount.
     * It uses the abi.decode() function to decode the payload.
     */
    function decodeFees(bytes memory _payload) internal pure returns (uint256) {
        (, , uint256 amount) = abi.decode(_payload, (bytes4, uint8, uint256));
        return amount;
    }

    /**
     * @notice decodeLock() is a function that decodes a payload and returns the sender address and amount.
     * @dev decodeLock() takes a bytes memory _payload as an argument and returns an address and uint256.
     * It uses the ABI library to decode the payload and returns the sender address and amount.*/
    function decodeLock(bytes memory _payload) internal pure returns (address, uint256) {
        (, , address sender, uint256 amount) = abi.decode(_payload, (bytes4, uint8, address, uint256));
        return (sender, amount);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;

import { OFT } from "../layerzero/token/oft/OFT.sol";
import { PauseGuardian } from "./PauseGuardian.sol";

/**
 * @title PausableOFT
 * @author AuraFinance
 * @notice Extension to the OFT standard that allows a `guardian` address to perform an emergency pause
 *  on the `sendFrom` function.
 */
contract PausableOFT is OFT, PauseGuardian {
    /**
     * @dev Constructs the PausableOFT contract
     * @param _name       The oft token name
     * @param _symbol     The oft token symbol
     */
    constructor(string memory _name, string memory _symbol) OFT(_name, _symbol) {}

    /**
     * @dev Override sendFrom to add pause modifier
     */
    function sendFrom(
        address _from,
        uint16 _dstChainId,
        bytes calldata _toAddress,
        uint256 _amount,
        address payable _refundAddress,
        address _zroPaymentAddress,
        bytes calldata _adapterParams
    ) public payable override whenNotPaused {
        super.sendFrom(_from, _dstChainId, _toAddress, _amount, _refundAddress, _zroPaymentAddress, _adapterParams);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;

import { Pausable } from "@openzeppelin/contracts-0.8/security/Pausable.sol";

/**
 * @title PauseGuardian
 * @author AuraFinance
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized immutable guardian address.
 */
contract PauseGuardian is Pausable {
    /* -------------------------------------------------------------------
       Storage 
    ------------------------------------------------------------------- */

    /// @dev The guardian address
    address public guardian;

    /* -------------------------------------------------------------------
       Initialize       
    ------------------------------------------------------------------- */
    /**
     * @dev Constructs the PauseGuardian contract
     * @param _guardian   The pause guardian address
     */

    function _initializePauseGuardian(address _guardian) internal {
        require(guardian == address(0), "already initialized");
        require(_guardian != address(0), "guardian=0");
        guardian = _guardian;
    }

    /* -------------------------------------------------------------------
       Modifiers 
    ------------------------------------------------------------------- */

    modifier onlyGuardian() {
        require(msg.sender == guardian, "!guardian");
        _;
    }

    /* -------------------------------------------------------------------
       Core 
    ------------------------------------------------------------------- */

    /**
     * @notice This function pauses the contract.
     * @dev This function can only be called by the 'guardian'.
     */
    function pause() external onlyGuardian {
        _pause();
    }

    /**
     * @notice This function is used to unpause the contract.
     * @dev This function can only be called by the 'guardian' of the contract.
     */
    function unpause() external onlyGuardian {
        _unpause();
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):